
Version 1 1

SCRIPT CONTROL LANGUAGE

REFERENCE GUIDE

Topic Title:
Overview of Script Control Language Syntax 6
Character Representation 7
Character Command Using Hexadecimal ASCII Code 8
Character Command Using ASCII Mnemonic 9
Control Command 10
Representing the Command Character 11
Representing the Control Character 12
Continuation Lines 13
Comments 14
CYRANO Datanames 15
Maximum Values in Scripts 16
Including Text from Other Source Files 17
Conditional Compilation of Source Code 18
The ENVIRONMENT Section 20
DESCRIPTION Statement 21
MODE HTTP Statement 22
 WAIT UNIT Statement 23
The DEFINITIONS Section 24
TEST Statement 25
THREAD Statement 26
CHARACTER Statement 27
CONSTANT Statement 28
FILE Statement 29
INTEGER Statement 30
TIMER Statement 31
Variable Arrays 32
Variable Values 33
Variable Options 34
Variable Scope Options 35
Random Variable Options 37
File Option 38
Example Variable Definitions 40
The CODE Section 41
Code Section Structure 42
Command Types 43
Version 1 2

Topic Title:
Script Processing 44
Variables 45
Labels 46
Symbols 47
Code Section Commands 48
HTTP Commands 49
CONNECT Command 50
DISCONNECT Command 51
GET Command 52
HEAD Command 55
LOAD RESPONSE_INFO BODY Command 58
LOAD RESPONSE_INFO HEADER Command 59
POST Command 60
SYNCHRONIZE REQUESTS Command 64
Input Stream Entry Commands 65
GENERATE Command 66
GET Command 67
HEAD Command 70
NEXT Command 73
POST Command 74
RESET Command 78
SET Command 79
Output Stream Handling Commands 81
~EXTRACT Command 82
FORMAT Command 83
LOAD RESPONSE_INFO BODY Command 85
LOAD RESPONSE_INFO HEADER Command 86
~LOCATE Command 87
Flow Control Commands 88
CALL Command 89
CALL SCRIPT Command 90
CANCEL ON Command 92
DETACH Command 93
DO Command 94
END SUBROUTINE Command 95
Version 1 3

Topic Title:
ENTRY Command 96
EXIT Command 97
GOTO Command 98
IF Command 99
ON ERROR Command 101
RETURN Command 102
SUBROUTINE Command 103
File Handling Commands 104
CLOSE Command 105
OPEN Command 106
READ Command 108
REWIND Command 109
WRITE Command 110
Formal Test Control Commands 111
END TEST-CASE Command 112
EXECUTE TEST Command 113
EXECUTE THREAD Command 114
FAIL TEST-CASE Command 116
HISTORY Command 117
PASS TEST-CASE Command 118
REPORT Command 119
START TEST-CASE Command 120
Synchronization Commands 121
ACQUIRE MUTEX Command 122
CLEAR SEMAPHORE Command 124
RELEASE MUTEX Command 125
SET SEMAPHORE Command 126
SYNCHRONIZE REQUESTS Command 127
WAIT Command 128
WAIT FOR SCRIPT Command 129
WAIT FOR SEMAPHORE Command 130
WAIT FOR TEST Command 132
Statistical Data Logging Commands 133
END TIMER Command 134
START TIMER Command 135
Version 1 4

Topic Title:
Diagnostic Commands 136
LOG Command 137
NOTE Command 138
TRACE Command 139
Miscellaneous Commands 140
CONNECT Command 141
DISCONNECT Command 142
LOAD ACTIVE_THREADS Command 143
LOAD DATE Command 144
LOAD NODENAME Command 145
LOAD SCRIPT Command 146
LOAD TEST Command 147
LOAD THREAD Command 148
LOAD TIME Command 149
LOAD TIMER Command 150
Version 1 5

Topic Title: OVERVIEW OF SCRIPT CONTROL LANGUAGE SYNTAX
OVERVIEW OF SCRIPT CONTROL LANGUAGE SYNTAX
The Script Control Language (SCL) is used to write thread scripts and test scripts:

• Thread scripts define and control the test cases and input that are to be used to test
the target system.

• Test scripts define the structure of a test, by specifying which threads are to be
executed and in what order. They also allow you to set up a dynamic test structure
that uses the results of threads that have already been run, to determine which
threads should be run later in the test.

Script source files consist of up to three sections – an Environment section, a Definitions
section and a Code section, which must appear (if present) in that order.

The first section is the mandatory Environment section. This section defines the global
attributes of the script, i.e. the script description, script mode and wait command units. It is
introduced by the ENVIRONMENT command, and continues until a DEFINITIONS or CODE
command is encountered.

The second section is the optional Definitions section. This section contains the variable,
constant, timer and file definitions for the script; for test scripts, it also contains thread
definitions and test declarations. It starts with the DEFINITIONS command, and continues
until the CODE command.

The last section is the mandatory Code section, which contains the main script commands.
The start of this section is marked by the CODE command; it continues until the end of the
script source file.

Tabs, spaces and form-feeds may be incorporated into the code to align keywords and
generally aid legibility; they have no other effect on compilation.
Version 1 6

Topic Title: CHARACTER REPRESENTATION
CHARACTER REPRESENTATION

The text within an SCL source file falls into three broad categories:

1. SCL commands.

2. Arguments to SCL commands – variable names, integer values or quoted character
strings, for example.

3. Comments, to improve legibility and maintenance.

Within character string arguments, SCL supports the use of any character with an ASCII
value in the range HEX 00 to FF inclusive. However, direct specification of these characters is
not always possible, for two reasons:

1. Characters with values in the ranges HEX 00 to 20 and HEX 7F to A0, and the value
HEX FF, are ‘non-printing’ characters, and cannot easily be specified in an SCL
source file.

2. Two characters are reserved for use by SCL – one as a command character and the
other as a control character. The characters used for these purposes cannot be used
as literal characters in a character string. The default values are “~” for the command
character and “^” for the control character; these values are used throughout these
instructions. They can, however, be changed within the script.

To resolve these problems, SCL provides a set of ‘character commands’, as described in
Representing the Command Character and Representing the Control Character. In addition,
to ensure there is no ambiguity within the source file, characters are rejected which have
values in the ranges HEX 00 to 20, or HEX 7F to A0, or the value HEX FF, except as described
in Characters ignored by the compiler.

Character commands are recognized within all SCL character strings (except for a small
number of exceptions that are explicitly stated). Thus, for example, the character string
“~<07>” always represents a single character (namely the character with a hexadecimal
value of 7), not five characters.

Note: Single quotes may be included in character strings by using double quotes for the
string delimiters, and vice versa.
Version 1 7

Topic Title: CHARACTER REPRESENTATION
Character Command Using Hexadecimal ASCII Code
All characters can be represented by hexadecimal ASCII code, character command. The
command format is:

~<hh>

“~” is the currently defined command character and “hh” is the hexadecimal ASCII code of
the required character. This form of character command is primarily intended to represent
characters that cannot be represented by any of the other forms of character command.

For example, the ASCII horizontal tabulation character is represented by “~<09>” and the
null character by “~<00>”.
Version 1 8

Topic Title: CHARACTER REPRESENTATION
Character Command Using ASCII Mnemonic
SCL provides a number of character commands which give an easily identifiable
representation of common control characters. These use the ASCII mnemonic of the control
character in question. The following commands are available (using the default command
character “~”):

~<BEL> Bell

~<BS> Backspace

~<CR> Carriage return

~ Delete

~<ESC> Escape

~<FF> Form feed

~<HT> Horizontal tab

~<LF> Line feed

~<SP> Space

~<VT> Vertical tab
Version 1 9

Topic Title: CHARACTER REPRESENTATION
Control Command
All 7-bit control characters, i.e. characters with ASCII codes in the range HEX 00 to 1F
inclusive, may be represented using a control command. The control command has the
following format:

^c

“^” is the default control character and “c” is the control character specifier. The control
character specifier is an ASCII graphics character with an ASCII code in the range HEX 40
(ASCII “@”) to 5F (ASCII “_”). The compiler will apply the bottom 6 bits only, to generate an
ASCII code in the range HEX 00 to 1F.

For example, the ASCII bell character (ASCII code HEX 07), is represented by “^G”.
Version 1 10

Topic Title: CHARACTER REPRESENTATION
Representing the Command Character
The command character always introduces a command and therefore cannot be used to
represent the command character itself. The command character is instead represented by a
command of the following format:

~~

“~” is the currently defined command character.
Version 1 11

Topic Title: CHARACTER REPRESENTATION
Representing the Control Character
The control character is always used to represent the <CTRL> key, in combination with the
character following it. It therefore cannot be used to represent the control character itself.
The control character is instead represented by a command of the following format:

~^

“~” is the currently defined command character and “^” is the currently defined control
character.
Version 1 12

Topic Title: CONTINUATION LINES
CONTINUATION LINES

It is not always possible to fit a script statement or command onto one line, so SCL allows
you to use ‘continuation lines’.

An SCL statement or command may be split over two or more lines by terminating all but the
last line of the statement with an ampersand or hyphen character (“&” or “–”). To avoid
possible confusion with the minus character, it is recommended that the ampersand be used,
and that it be separated from the preceding characters on the line by at least one space.

The only things that may follow a continuation character are space characters, tab
characters and comments (see the next section).

A quoted character string is continued onto another line by closing it at the end of the line
and re-opening it on the next. Opening and closing quotes must match on any one line, as
shown in the following example:

LOG "This string of text is continued " &

’over two lines.’

LOG "This message contains a variable ", VAR1, &

’ and is continued on this line ’, &

VAR2, ’ and this line’, &

’ and this line’

Note: A line that ends with an SCL command or statement terminated by “&” or “–” implies
that the next line encountered will be regarded as a continuation of the original command or
statement.
Version 1 13

Topic Title: COMMENTS
COMMENTS

Scripts may incorporate comments, either on lines by themselves or embedded in
statements or commands. In both cases, the comment is identified by the comment
command (“!”), and terminated by the end of the line. For example:

!
!Get next page.
!
 SET conid = conid + 1 ! Update connection ID
 GET URL "http://abc.com" & ! Get this URL
 ON conid & ! use this TCP connection
 HEADER sub_header & ! default headers
 , WITHOUT "Referer" ! no referer
Version 1 14

Topic Title: CYRANO DATANAMES
CYRANO DATANAMES

The names of many items within scripts must be defined as a CYRANO dataname. For
example, script names, variable names and subroutine names must all be CYRANO
datanames.

A CYRANO dataname comprises between 1 and 16 alphanumeric, underscore or hyphen
characters. The first character must be alphabetic; spaces are not allowed; two adjacent
underscores or hyphens are not allowed; and neither is a trailing underscore or hyphen.
Version 1 15

Topic Title: MAXIMUM VALUES IN SCRIPTS
MAXIMUM VALUES IN SCRIPTS

The SCL compiler and system resources impose limitations at run-time on the maximum
value (number, size, level etc) allowed for a number of items which may be specified in an
SCL source file.

Description Value

Max. source line length (characters) 132

Max. no. of labels (per subroutine/main code) 255

Max. no. of timers 1020

Max. no. of variables 8000

Max. no. of global variables 8000

Max. no. of subroutines 255

Max. no. of parameters passed between scripts 8

Max. no. of external data files referenced in script 256

Max. no. of external data files open concurrently 10

Max. character variable size (bytes) 65535

Max. character constant/literal size (bytes) 65535

Max. space available for script values (Kbytes) 128

Max. nesting level for conditions 10

Max. nesting level for array expressions 10

Max. nesting level for conditional compilations 10

Max. nesting level for IF/DO commands 100

Max. nesting level for subroutines 10
Version 1 16

Topic Title: INCLUDING TEXT FROM OTHER SOURCE FILES
INCLUDING TEXT FROM OTHER SOURCE FILES

The INCLUDE command allows you to combine several source files into a single source file
at compilation time. These included files may contain commands from any of the script
sections and may span these sections. Scripts may be nested up to a depth of 10, including
the main script. Care should be taken to avoid duplicating any of the script section
commands (for example, ENVIRONMENT).

This command can appear at any point within the script, including before the
ENVIRONMENT command.

Format:

INCLUDE filename

Parameter:

filename
A quoted character string which defines the name of the source file to be included. The
location of the file will default to the current default directory.

Example:

INCLUDE ’\usr\payrol\tests\payroll.gbl’
Version 1 17

Topic Title: CONDITIONAL COMPILATION OF SOURCE CODE
CONDITIONAL COMPILATION OF SOURCE CODE

SCL provides a number of commands to allow you to define that a section of code should be
compiled only under certain circumstances. Conditional sections of code are marked with
‘variants’.

Variants are specified on the -V option, on the scl compiler command line when you compile
the source file.

Conditional compilation commands may appear at any point within the Environment,
Definitions and Code sections, including before the ENTRY command and between
subroutines. They cannot appear part way through a command or statement. They may be
nested to a depth of 10.

Format:

condition variant

Parameters:

condition
A conditional compilation command which starts or ends a section of code. This may be one
of the following:

The #IFDEF, #IFNDEF and #ELIF commands require the “variant” parameter, to specify the
condition under which the following section of code will be compiled. The #ELSE and
#ENDIF commands relate to the most recently specified variant.

variant
A CYRANO dataname which identifies a section of code that is only compiled under certain
conditions. The compiler processes this variant in conjunction with the -V option on the scl
command line.

Examples:

#IFDEF variant1
log "This is only compiled if /VARIANT=variant1 is specified"

#ELIF variant2
 log "This is only compiled if /VARIANT=variant2 is specified"

#IFDEF Compile next section if “variant” requested

#IFNDEF Compile next section if “variant” not requested

#ELIF Otherwise compile next section if “variant” requested

#ELSE Otherwise compile the next section

#ENDIF End of variant section
Version 1 18

Topic Title: CONDITIONAL COMPILATION OF SOURCE CODE
#ELSE
log "This is only compiled if neither variant is specified"

#ENDIF
Version 1 19

Topic Title: THE ENVIRONMENT SECTION
THE ENVIRONMENT SECTION
The Environment section of the SCL source code is introduced by the mandatory
ENVIRONMENT command. It defines the global attributes of the script, i.e. the script
description, the script mode and wait command units.

The Environment section must be the first section of the script, preceding the Definitions
section (if present) and Code section. It may, however, be preceded by an INCLUDE
statement. For further information, see Including Text from Other Source Files.
Version 1 20

Topic Title: DESCRIPTION STATEMENT
DESCRIPTION STATEMENT

Description:

This mandatory statement assigns a descriptive character string to a script. This descriptive
string will be displayed on the CYRANO TestCommander utility’s Script Properties form.

Format:

DESCRIPTION string

Parameter:

string
A quoted character string, between 1 and 50 characters in length, used as the description.

Examples:

DESCRIPTION ’Create Customer Records’

DESCRIPTION "Update Customer’s Record"

DESCRIPTION "Test abc.com Support Pages"
Version 1 21

Topic Title: MODE HTTP STATEMENT
MODE HTTP STATEMENT

This optional statement defines the script as an HTTP mode script. These scripts are used to
issue HTTP requests to an HTTP server.

This statement must be specified in order for the HTTP-specific commands to be available to
a script.

Format:

MODE HTTP

Parameters:

None
Version 1 22

Topic Title: WAIT UNIT STATEMENT
 WAIT UNIT STATEMENT

This optional statement defines the unit of the wait period specified in WAIT commands
within a script. This does NOT apply to the wait period in the WAIT FOR SEMAPHORE
command - the wait period in this command is always specified in seconds.

If this statement is omitted, the wait unit is seconds.

Format:

WAIT UNIT [SECONDS | MILLISECONDS]

Parameters:

None
Version 1 23

Topic Title: THE DEFINITIONS SECTION
THE DEFINITIONS SECTION
The Definitions section of the SCL source code defines the variables, threads and constants
that are used by the script. It can also contain declarations of tests, timers and files. It is
optional, and is introduced by the DEFINITIONS command.

Only one Definitions section may appear in a script; if it is present, it must follow the
Environment section and precede the Code section.
Version 1 24

Topic Title: TEST STATEMENT
TEST STATEMENT

Description:

This statement declares a test that may be executed by a test script. All tests referenced
within a test script must be declared within the Definitions section of the script, using this
statement.

Up to 32767 tests may be declared and used in a test script.

Format:

TEST name

Parameter:

name
The name of a test. This must be a valid CYRANO dataname.

Example:

TEST pers

Version 1 25

Topic Title: THREAD STATEMENT
THREAD STATEMENT

Description:

This statement defines a thread. All threads referenced within a test script must be defined
within the Definitions section of the script.

Up to 32767 threads may be defined and used in a test script.

Format:

THREAD name FOR TARGET target_type

Parameters:

name
The name of the thread. This must be a valid CYRANO dataname.

target_type
Defines the target test object type of the thread. This may be set to "COMMAND" or “WEB”

Example:

THREAD pers-thr FOR TARGET COMMAND
Version 1 26

Topic Title: CHARACTER STATEMENT
CHARACTER STATEMENT

Description:

This statement defines a character string variable consisting of ASCII characters, including
control characters. SCL supports character variables of between 1 and 65535 bytes in
length.

Arrays of character variables can be defined, with a maximum of three dimensions. For
further information about arrays, see Variable Arrays.

An asterisk may be used instead of a colon to delimit the size.

Format:

CHARACTER{:n} name {[dimensions]}|{values} {, options}

Parameters:

n
An unsigned integer value in the range 1–65535, representing the size of the variable in
bytes. The default is 1.

name
The name of the variable. This must be a valid CYRANO dataname.

dimensions
The dimensions of the array to be allocated for this variable. Up to three dimensions can be
specified, separated by commas, each comprising one or two numbers.

If a dimension has only one number, the elements in that dimension range from 1 to the
number specified. If two numbers are specified, they must be separated by a colon (“:”); the
elements in this dimension range from the first number to the second.

Note that if “dimensions” is specified, “values” may not be.

values
A list of character values to be associated with the variable. Note that if “values” is specified,
“dimensions” may not be. See Variable Values for further information on variable values.

options
A list of variable options. See Variable Options for further information on variable options.

Examples:

CHARACTER:15 dept

CHARACTER:20 names (’TOM’,’JOHN’,’DICK’), SCRIPT

CHARACTER:9 months [12]

CHARACTER*20 staff-by-dept [8,101:150]
Version 1 27

Topic Title: CONSTANT STATEMENT
CONSTANT STATEMENT

Description:

This statement defines a variable which has a static value within a script. They may thus be
translated at compilation time, and not consume memory at run-time.

The value of a constant may be either an integer value or a quoted character string.

Constants can be used in any situation where a literal of the same type (i.e. character or
integer) can be used, for example in a value list. The only constraint is that the constant must
have been defined before it is used.

Format:

CONSTANT name = value

Parameters:

name
The name of the constant. This must be a valid CYRANO dataname.

value
A quoted character string or an integer value.

Examples:

CONSTANT TRUE = -1

CONSTANT PROMPT = ’Enter Value : ’

CONSTANT SEARCHSTRING = ’ "TERMINATE" ’
Version 1 28

Topic Title: FILE STATEMENT
FILE STATEMENT

Description:

This statement declares an identifier (ID) for any external files that are accessed by this
script. The FILE statement is mandatory for any files that are being passed as a parameter to
the script, and optional otherwise. It is good practice, however, to formally declare all file IDs
in this way before use.

Format:

FILE input_fileid

Parameter:

input_fileid
A CYRANO dataname used to identify a file that is passed as a parameter to the script.

Example:

FILE datafile
Version 1 29

Topic Title: INTEGER STATEMENT
INTEGER STATEMENT

Description:

This statement defines a variable with a positive or negative integral value. In SCL, integers
are defined as being 4 bytes long, giving a range of –2147483648 to +2147483647.

Arrays of integer variables can be defined, with a maximum of three dimensions. For further
information about arrays, see Variable Arrays.

Format:

INTEGER name {[dimensions]}|{values} {, options}

Parameters:

name
The name of the variable. This must be a valid CYRANO dataname.

dimensions
The dimensions of the array to be allocated for this variable. Up to three dimensions can be
specified, separated by commas, each comprising one or two numbers.

If a dimension has only one number, the elements in that dimension range from 1 to the
number specified. If two numbers are specified, they must be separated by a colon (“:”); the
elements in this dimension range from the first number to the second. Note that if
“dimensions” is specified, “values” may not be.

values
A list or range of integer values to be associated with the variable.

Note that if “values” is specified, “dimensions” may not be. For further information on
variable values, see Variable Values.

options
A list of variable options. For further information on variable options, see Variable Options.

Examples:

INTEGER loop-count

INTEGER fred (1-99), SCRIPT

INTEGER values [50:100,20]
Version 1 30

Topic Title: TIMER STATEMENT
TIMER STATEMENT

Description:

The TIMER statement declares the name of a stop-watch timer. These timers may be used
in conjunction with the START TIMER and END TIMER statements in the Code section of
the script.

Up to 1020 timers may be declared and used in a script.

Format:

TIMER name

Parameter:

name
The name of the timer. This must be a valid CYRANO dataname.

Examples:

TIMER Mf-Update

TIMER Cust-Reg
Version 1 31

Topic Title: VARIABLE ARRAYS
VARIABLE ARRAYS

Character and integer variables declared within the Definitions section of a script may be
defined as arrays. SCL supports arrays of up to three dimensions. There is no defined limit to
the number of elements which may be declared in an array dimension.

If an array of two or three dimensions is specified, each dimension must be separated from
the following dimension by a comma. When an array is referenced, array subscripts must be
specified for each of its dimensions.

The numbering of the array elements is dependent on how the array was declared. SCL
supports both start and end array subscript values within the array declaration itself. For
example:

CHARACTER*9 MONTHS [1:12]
CHARACTER*9 MONTHS [12]

Both of these variable declarations declare an array of character variables each with 12
elements. The elements in the array are both numbered 1 to 12. Compare them with the
following example:

CHARACTER*9 MONTHS [0:11]

This example also declares an array of 12 elements, but the array elements are numbered
from 0 to 11.

Only positive values can be specified for the start and end array subscript values, and the
start value must be less than or equal to the end value. If the start value is omitted, it defaults
to 1.

When you want to retrieve a value from an array variable, you can use numeric literals,
integer variables or complex arithmetic expressions to specify the element(s). For example:

SET Tax = Revenue [Office, Index + 1] * 0.175
Version 1 32

Topic Title: VARIABLE VALUES
VARIABLE VALUES

A set of values may be associated with a variable, using a value clause in the variable
definition. They are used by the GENERATE and NEXT commands, which allow the variable
to be assigned a value from the list or range, either randomly (using GENERATE) or
sequentially (using NEXT).

Values may be specified as a list (for integer and character variables) or as a range (integer
variables only).

Note: Lists may contain only individual values, and not ranges. Variables which have been
declared as an array may not have an associated value list or range.

A value list has the following format:

(value1{, value2, value3 ...})

The values must be of the same data type as the variable, i.e. integer values for integer
variables and character values for character variables. They may be literals or constants
which have previously been defined.

Note: In the case of character variables, the maximum size of a character constant or literal
string is 65535 characters.

Ranges provide a shorthand method for defining a list of adjacent integer values and have
the following format:

(start_value - end_value)

If the start value is less than the end value, the variable is incremented by 1 on each
execution of the NEXT command, until the end value is reached. If the start value is greater
than the end value, the variable is decremented by 1 on each execution of the NEXT
command, until the end value is reached.

If the variable is set to the end value when the NEXT command is executed, the variable will
be reset to the start value. You can also reset the variable explicitly, by using the RESET
command.

In the following list of example variable definitions including values, the first two definitions
are equivalent:

Integer A (4,3,2,1,0,-1)
Integer B (4 - -1)
Integer C (100 - 999)
Integer D (100,200,300,400)
Character*10 Language ("ENGLISH", ’FRENCH’, &

’GERMAN’, "SPANISH")
Character Control ("~<CR>", "~<LF>", "^Z", &

"^X", "^U")
Version 1 33

Topic Title: VARIABLE OPTIONS
VARIABLE OPTIONS

Additional attributes may be assigned to a variable using option clauses. Variable options
follow the value definitions (if present), and are introduced by a comma. There are three
types of option clause available: the first defines the scope of the variable; the second is
used with variables with associated values, to define how random values are to be
generated, if required; the third is used with variables that are defined as a parameter for the
script.

The following sections describe the types of variable option clause.
Version 1 34

Topic Title: VARIABLE OPTIONS
Variable Scope Options
The variable scope options define how widely accessible the variable is; they are mutually
exclusive. The variable scope options are:

,LOCAL
,SCRIPT
,THREAD
,GLOBAL

These options are described below:

• LOCAL

Local variables are only accessible to the thread running the script in which they are
defined. They cannot be accessed by any other threads or scripts (including scripts
referenced by the main script). Similarly, a script cannot access any of the local
variables defined within any of the scripts it calls.

Space for local variables defined within a script is allocated when the script is
activated and deallocated when script execution completes.

This is the default if no scope option is specified in the variable definition.

• SCRIPT

Script variables are accessible to any thread running the script in which they are
defined.

Space for the script variables defined within a script is allocated when the script is
activated and there are no threads currently running the script. If one or more threads
are already running the script, the existing script variable data is used.

The space for script variables is normally deallocated when the execution of a script
terminates, and no other threads are running the script. In some cases, however, it
may be desirable to retain the contents of script variables even if there is no thread
accessing the script. This can be achieved by using the “,KEEPALIVE” clause on the
EXIT command. The space allocated to script variables is only deleted when a thread
is both the last thread accessing the script and has not specified the “,KEEPALIVE”
clause. A particular use of this clause is where the script is being called by a number
of threads, but there is no guarantee that there will be at least one thread accessing
the script at all times.
Version 1 35

Topic Title: VARIABLE OPTIONS
• THREAD

Thread variables are accessible from any script executed by the thread which
declares an instance of them.

The space for thread variables is deallocated when the thread completes.

Thread variables cannot have associated value lists or ranges.

• GLOBAL

Global variables are accessible to any thread running any script under the same Test
Manager.

The space for global variables is deallocated when the Test Manager in question is
closed down.

Global variables cannot have associated value lists or ranges.
Version 1 36

Topic Title: VARIABLE OPTIONS
Random Variable Options
The random options are only valid for variables which have an associated set of values; they
are mutually exclusive. The two random options are:

,RANDOM
,REPEATABLE {RANDOM} {, SEED = n}

These options function as follows:

• RANDOM

This option indicates that a value is to be selected randomly from a list or range,
when the variable is used in conjunction with the GENERATE command. The values
will be selected in a different order each time they are generated; this is achieved by
generating a different seed value for the variable each time the variable is initialized.
Local variables are initialized when script execution begins. Script variables are
initialized by the first thread to execute the script.

This option is particularly useful when load-testing a system.

This is the default if no random option is specified.

• REPEATABLE {RANDOM}
This option indicates that a value is to be selected randomly from a list or range,
when the variable is used in conjunction with the GENERATE command, but in the
same order each time the script is run. This is achieved by using the same seed value
for the variable each time the variable is initialized.

This option is particularly useful in regression testing when reproducible input is
required.

• SEED = n
This option can be used in conjunction with the REPEATABLE RANDOM option, to
specify the seed value that is to be used when generating the random sequence of
numbers. This makes it possible to use a different sequence of random values for
each repeatable random variable. “n” is a numeric literal in the range –2147483648 to
+2147483647.
Version 1 37

Topic Title: VARIABLE OPTIONS
File Option
The variable file option associates an ASCII text file of values - one per line - with a variable:

, FILE = <filename>

where “filename” is the name of the ASCII text file, excluding the pathname and file
extension. The file must always reside in a project's data directory and the file extension
must always be ".fvr".

The file is used by the NEXT command, which allows the variable to be assigned a value
from the file sequentially.

Values are held in the file with one value per line. The values must be of the same data type
as the variable, i.e. integer values for integer variables and character values for character
variables. For example, a file for an integer variable could contain the values:

-100

0

100

A file for a character variable could contain the values:

Pele

10

Cruyff

14

Note that SCL character commands are not recognised within the file variable files - the file
should contain raw ASCII characters only.

Values are retrieved from the file associated with a variable using the NEXT command. This
command retrieves the next sequential value from the file. When the NEXT command is first
executed, it will retrieve the first value from the file. If the variable is set to the last value in
Version 1 38

Topic Title: VARIABLE OPTIONS
the file when the NEXT command is executed, the variable will be reset to the first value in
the file. You can also reset the variable explicitly, by using the RESET command.

The file option is NOT valid for variables which:

1. Have an associated value list

2. Have been declared as an array

3. Are part of a record
Version 1 39

Topic Title: EXAMPLE VARIABLE DEFINITIONS
EXAMPLE VARIABLE DEFINITIONS

This section shows a number of example variable definitions:

Integer Isub (100,200,300,400)

Integer ERRCOUNT ,Global

Integer Jsub (-400,-300,-200), Local, Random

Integer B ,Script, Repeatable, Seed=30352

Integer Prdcod ,File=”prd_codes”

Character:24 surname

Character*10 Alph ("A","C","E"), Repeatable Random

Character*80 Prddsc ,File=”prd_descriptions”

Constant TAXrate = 17.5

Constant confirm = "Confirm [Y/N] :"
Version 1 40

Topic Title: THE CODE SECTION
THE CODE SECTION
The mandatory Code section of the SCL source file contains all the commands that define
the script’s behavior.

A script source file must contain a (single) Code section as the last section in the file. It is
introduced by the mandatory CODE command.
Version 1 41

Topic Title: CODE SECTION STRUCTURE
CODE SECTION STRUCTURE

The Code section of an SCL source file is composed of:

• Commands

SCL provides a wide range of commands that control the behavior of the script.

A command is normally terminated by the end of the source line, but may be
continued on a subsequent line by specifying the continuation character as the last
character on a line - apart for any line comment. Either an ampersand or a hyphen
(“&” or “–”) may be used as the continuation character; this is described in
Continuation Lines.

Spaces and tabs are treated as separators within a command, although spaces are
significant when they appear in character string arguments.

• Characters ignored by the compiler

The script compiler allows any character with an ASCII value in the range HEX 00 to
20 or HEX 81 to 8F inclusive to appear at the start of a line or the end of a line. It
ignores these characters, allowing tabs and form-feeds, for example, to be used to
aid legibility.

If any ASCII control character appears elsewhere, the script compiler will generate a
compilation error.
Version 1 42

Topic Title: COMMAND TYPES
COMMAND TYPES

SCL offers a large number of commands to support the creation of powerful and flexible
scripts. These fall into a number of distinct categories:

• HTTP Commands

• Input Stream Entry Commands

• Output Stream Handling Commands

• Flow Control Commands

• File Handling Commands

• Formal Test Control Commands

• Synchronization Commands

• Statistical Data Logging Commands

• Diagnostic Commands

• Miscellaneous Commands
Version 1 43

Topic Title: SCRIPT PROCESSING
SCRIPT PROCESSING

When a script is executed, the first command in the script is selected and executed.

Commands are processed sequentially, unless a command that alters the flow of control is
executed, in which case processing continues at the defined point in the script.

A script terminates when the end of the script is reached, when an EXIT, or
DETACH {THREAD} command is executed, or when an error is detected and error trapping
is not enabled for the script.
Version 1 44

Topic Title: VARIABLES
VARIABLES

All variables accessed by a script must be pre-defined in the Definitions section of the script.
If an undefined variable is accessed from within an SCL source file, a syntax error will be
reported.

All integer variables are initially set to zero, and character variables are empty
Version 1 45

Topic Title: LABELS
LABELS

Labels may be used to identify SCL statements. A label consists of label name followed by a
colon. For example:

REQ_TIMEOUT: LOG "HTTP GET", url, "timed out"

A label name must be a valid CYRANO dataname.

Any defined subroutines may not reference labels defined in other sections of the code,
since labels are local to the module within which they are defined.
Version 1 46

Topic Title: SYMBOLS
SYMBOLS

During compilation, the compiler maintains symbol tables of all the symbols it has
encountered, so that it may resolve references to them. There are separate symbol tables for
tests, variables, timers, labels and threads.

All symbols within a symbol table must be unique. However, the use of separate symbol
tables allows, for instance, the same name to be used for a label as for a variable.

Furthermore, because labels are not propagated into subroutines or vice versa, labels within
a subroutine may duplicate labels within other subroutines, or within the main body of the
code.
Version 1 47

Topic Title: CODE SECTION COMMANDS
CODE SECTION COMMANDS

This section describes the commands that can be included in the Code section of a script
source file.

The Code section can also contain character commands, labels and comments. Further
information on these items is given in Overview of Script Control Language Syntax.

For easier reference some HTTP-specific commands are documented in two places. They
are grouped together under the heading “HTTP Commands” and are also found under other
relevant headings.
Version 1 48

Topic Title: CODE SECTION COMMANDS
HTTP Commands

The HTTP commands provide facilities for issuing HTTP requests for resources, examining/
interrogating the response messages and synchronizing requests. These commands are
only available in scripts which contain the MODE HTTP statement in their Environment
section
Version 1 49

Topic Title: CODE SECTION COMMANDS
CONNECT Command

Description:

This command may be used to establish a TCP connection to a nominated host. It is only
valid within a script that has been defined as MODE HTTP.

This command specifies an ID for the TCP connection. This may be used in subsequent
GET, HEAD, POST and LOAD RESPONSE_INFO commands to use this TCP connection.
The TCP connection may be closed using the DISCONNECT command. It will also be
terminated when the thread exits the script.

The connection ID specified must not correspond to a TCP connection already established
previously using the CONNECT command. Otherwise a script error will be reported.

Format:

CONNECT TO host ON conid

Parameters:

host

A character variable, quoted character string or character expression, containing the host
name or IP address of the resource to connect to and, optionally, the port number on which
the connection is to be made. If a port is specified, it must be separated from the host field by
a colon (":"). If the port number field is empty or not specified, the port defaults to TCP 80.

conid

An integer variable, integer value or integer expression defining the connection ID. This is
used in all subsequent operations on this connection.

Examples:

CONNECT TO "proxy.dev.mynet:3128" ON 1

CONNECT TO myhost ON 2

CONNECT TO ’abc.com’ ON conid
Version 1 50

Topic Title: CODE SECTION COMMANDS
DISCONNECT Command

Description:

This command closes one or all of the TCP connections established using the CONNECT
command. It is only valid within a script that has been defined as MODE HTTP.

If the "FROM conid" clause is specified, the TCP connection identified by that Connection ID
will be closed. If the "ALL" keyword is used, all TCP connections established by the current
thread will be closed.

By default, the DISCONNECT command will wait until any requests on the connection(s) to
be closed are complete before closing them. If the WITH CANCEL clause is specified, the
connection(s) will be closed immediately.

The Connection ID specified must correspond to a TCP connection established using the
CONNECT command, otherwise a script error will be reported.

Format:

DISCONNECT [FROM conid | ALL] {,WITH CANCEL}

Parameters:

conid

An integer variable, integer value or integer expression identifying the Connection ID of the
TCP connection to be closed.

Examples:

DISCONNECT FROM 1

DISCONNECT FROM conid

DISCONNECT FROM 1, WITH CANCEL

DISCONNECT ALL

DISCONNECT ALL, WITH CANCEL
Version 1 51

Topic Title: CODE SECTION COMMANDS
GET Command

Description:

This command issues an HTTP GET request for a specified resource. It is only valid within a
script that has been defined as MODE HTTP.

The request header fields are obtained from the HEADER clause. These can be modified
using the WITH and WITHOUT clauses.

The HTTP GET request is asynchronous. Immediately after the request is issued, the next
command in the script is processed - it does not wait for a response message to be received.

There is an optional "RESPONSE TIMER" clause, which can be used to specify that a pair of
response timer records are to be written to the statistics log. The first record is written when
the request message is sent, and the second is written on receipt of the response request
message from the server.

The response code in the response message can be retrieved by using the optional
"RETURNING CODE response_code " clause to specify the integer variable to hold the
response code. The variable is loaded when the response message is received from the
server. In addition, the optional "RETURNING STATUS response_status" clause can be
used to specify the integer variable to hold one of two values indicating whether the request
succeeded or failed. There is an SCL include file "response_codes.inc" supplied with
OpenSTA, which defines SCL integer constants for both the response code and response
status values.

The TCP connection used for the request depends upon whether a connection has already
been established for the specified Connection ID using the CONNECT command. If it has,
the request uses that connection. If it has not, a TCP connection will be established to the
host identified by the uri-httpversion, on port 80.

By default, if an error occurs while establishing the TCP connection or issuing the request,
an error message will be written to the audit log and the thread will be aborted. However, if
error trapping is enabled, control will be transferred to the error-handling code.
Version 1 52

Topic Title: CODE SECTION COMMANDS
Format:

GET [URI | URL] uri-httpversion {&}

ON conid {&}

HEADER http_header {&}

{,WITH header_value} {&}

{,WITHOUT header_field} {&}

{,RESPONSE TIMER timer_name} {&}

{,RETURNING STATUS response_status} {&}

{,RETURNING CODE response_code}

Parameters:

uri-httpversion

A character variable, quoted character string or character expression, containing the URI
(Uniform Resource Identifier) of the resource upon which to apply the request, and the HTTP
Version, separated by a single space character. The HTTP Version indicates the format of
the message and the sender’s capacity for understanding further HTTP communication.

conid

An integer variable, integer value or integer expression identifying the Connection ID of the
TCP connection on which to issue the request.

http_header

A character variable, quoted character string, character expression or character value list
containing the request header fields.

header_value

A character variable, quoted character string, character expression or character value list
containing zero or more request header fields. These request-header fields are added to
those specified in "http_header". If a request-header field appears in both "http_header" and
"header_value", the field specified here overrides that specified in "http_header".

header_field

A character variable, quoted character string, character expression or character value list
containing the request header field names of fields to be excluded from the request.

timer_name

The name of a timer declared in the Definitions section of the script.
Version 1 53

Topic Title: CODE SECTION COMMANDS
response_status

An integer variable into which the response status of the HTTP response message is loaded
when the HTTP response message is received.

response_code

An integer variable into which the response code of the HTTP response message is loaded
when the HTTP response message is received.

Examples:

GET URL "http://abc.com/~~pascal/don.gif HTTP/1.0" ON conid &

HEADER sub_header &

,WITH (" Host: abc.com", "Referer: http://abc.com/~~pascal/")

GET URI "http://abc.com/~~pascal/don.gif HTTP/1.0" ON 2 &

HEADER sub_header &

,WITH " Host: abc.com" &

,WITHOUT "Referer Accept-Language"
Version 1 54

Topic Title: CODE SECTION COMMANDS
HEAD Command

Description:

This command issues an HTTP HEAD request for a specified resource. It is only valid within
a script that has been defined as MODE HTTP.

The request header fields are obtained from the HEADER clause. These can be modified
using the WITH and WITHOUT clauses.

The HTTP HEAD request is asynchronous. Immediately after the request is issued, the next
command in the script is processed - it does not wait for a response message to be received.

There is an optional "RESPONSE TIMER" clause, which can be used to specify that a pair of
response timer records are to be written to the statistics log. The first record is written when
the request message is sent, and the second is written on receipt of the response request
message from the server.

The response code in the response message can be retrieved by using the optional
"RETURNING CODE response_code " clause to specify the integer variable to hold the
response code. The variable is loaded when the response message is received from the
server. In addition, the optional "RETURNING STATUS response_status" clause can be
used to specify the integer variable to hold one of two values indicating whether the request
succeeded or failed. There is an SCL include file "response_codes.inc" supplied with
OpenSTA, which defines SCL integer constants for both the response code and response
status values.

The TCP connection used for the request depends upon whether a connection has already
been established for the specified Connection ID using the CONNECT command. If it has,
the request uses that connection. If it has not, a TCP connection will be establised to the
host identified by the uri-httpversion, on port 80.

By default, if an error occurs while establishing the TCP connection or issuing the request,
an error message will be written to the audit log and the thread will be aborted. However, if
error trapping is enabled, control will be transferred to the error-handling code.
Version 1 55

Topic Title: CODE SECTION COMMANDS
Format:

GET [URI | URL] uri-httpversion {&}

ON conid {&}

HEADER http_header {&}

{,WITH header_value} {&}

{,WITHOUT header_field} {&}

{,RESPONSE TIMER timer_name} {&}

{,RETURNING STATUS response_status} {&}

{,RETURNING CODE response_code}

Parameters:

uri-httpversion

A character variable, quoted character string or character expression, containing the URI
(Uniform Resource Identifier) of the resource upon which to apply the request, and the HTTP
Version, separated by a single space character. The HTTP Version indicates the format of
the message and the sender’s capacity for understanding further HTTP communication.

conid

An integer variable, integer value or integer expression identifying the Connection ID of the
TCP connection on which to issue the request.

http_header

A character variable, quoted character string, character expression or character value list
containing the request-header fields.

header_value

A character variable, quoted character string, character expression or character value list
containing zero or more request-header fields. These request header fields are added to
those specified in "http_header". If a request header field appears in both "http_header" and
"http_value", the field specified here overrides that specified in "http_header".

header_field

A character variable, quoted character string, character expression or character value list
containing the request header field names of fields to be excluded from the request.

timer_name

The name of a timer declared in the Definitions section of the script.

response_status
Version 1 56

Topic Title: CODE SECTION COMMANDS
An integer variable into which the response status of the HTTP response message is loaded
when the HTTP response message is received.

response_code

An integer variable into which the response code of the HTTP response message is loaded
when the HTTP response message is received.

Examples:

HEAD URL "http://abc.com/~~pascal/don.gif HTTP/1.0" ON conid &

HEADER sub_header &

,WITH (" Host: abc.com", "Referer: http://abc.com/~~pascal/")

HEAD URL "http://abc.com/~~pascal/don.gif HTTP/1.0" ON 2 &

HEADER sub_header &

,WITH " Host: abc.com" &

,WITHOUT "Referer Accept-Language"
Version 1 57

Topic Title: CODE SECTION COMMANDS
LOAD RESPONSE_INFO BODY Command

Description:

This command loads a character variable with all or part of the data from an HTTP response
message body for a specified TCP connection. It is used after a GET, HEAD or POST
command.

OpenSTA will automatically wait until any request on the specified connection ID is complete
before executing this command. It is not necessary for the script to do this explicitly.

If the data string is too long to fit into the target variable, it will be truncated.

The WITH clause can be used to specify a DOM (Document Object Model) signature
identifying the data to be returned. If this clause is omitted, the full response message body
is loaded into the target variable.

Format:

LOAD RESPONSE_INFO BODY ON conid INTO variable {&}

{,WITH identifier}

Parameters:

conid

An integer variable, integer value or integer expression identifying the Connection ID of the
TCP connection on which the HTTP response message will be received.

variable

The name of a character variable into which the HTTP response message body, or the
selected part of it, are loaded.

identifier

A character variable, quoted character string or character expression containing a DOM
(Document Object Model) signature identifying the data to be retrieved from the response
message body.

Example:

LOAD RESPONSE_INFO BODY ON 1 INTO post_body
Version 1 58

Topic Title: CODE SECTION COMMANDS
LOAD RESPONSE_INFO HEADER Command

Description:

This command loads a character variable with all or some of the HTTP response message
header fields for a specified TCP connection.

OpenSTA will automatically wait until any request on the specified Connection ID is complete
before executing this command. It is not necessary for the script to do this explicitly.

If the data string is too long to fit into the target variable, it will be truncated.

The WITH clause can be used to specify the names of one or more header fields whose
values are to be retrieved from the HTTP response message. If this clause is omitted, all the
response message header fields are retrieved.

Format:

LOAD RESPONSE_INFO HEADER ON conid INTO variable {&}

{,WITH identifier}

Parameters:

conid

An integer variable, integer value or integer expression identifying the connection ID of the
TCP connection on which the HTTP response message will be received.

variable

The name of a character variable into which the HTTP response message headers, or the
selected headers, are loaded.

identifier

A character variable, quoted character string or character expression containing the names
of one or more response message header fields to be retrieved.

Example:

LOAD RESPONSE_INFO HEADER ON 4 INTO resp_headers
Version 1 59

Topic Title: CODE SECTION COMMANDS
POST Command

Description:

This command issues an HTTP POST request for a specified resource. It is only valid within
a script which has been defined as MODE HTTP.

The request field headers to be used in the request are obtained from the HEADER clause,
appropriately modified by the WITH and WITHOUT clauses, if specified.

The HTTP POST request is asynchronous. Immediately after the request is issued, the next
command in the script is processed - it does not wait for a response message to be received.

There is an optional "RESPONSE TIMER" clause, which can be used to specify that a pair of
response timer records are to be written to the statistics log. The first record will be written
when the request message is sent, and the second written on receipt of the response
request message from the server.

The status code in the response message may be retrieved by using the optional
"RETURNING CODE response_code" clause to specify the integer variable to hold the
response code. The variable is loaded when the response message is received from the
server. In addition, the optional "RETURNING STATUS response_status" clause may be
used to return one of two values indicating whether the request succeeded or failed. There is
an SCL include file "response_codes.inc" supplied with OpenSTA, that defines SCL integer
constants for both the response code and response status values.

The TCP connection used for the request depends upon whether a connection has already
been established for the specified Connection ID using the CONNECT command. If it has,
the request uses that connection. If it has not, a TCP connection will be established to the
host identified by the uri-httpversion, on port 80.

By default, if an error occurs while establishing the TCP connection or issuing the request,
an error message is written to the audit log and the thread is aborted. However, if error
trapping is enabled, control will be transferred to the error-handling code.

The "ON TIMEOUT GOTO tmo_label" clause can be specified to define label to which
control will be transferred if the request times out.
Version 1 60

Topic Title: CODE SECTION COMMANDS
Format:

POST [URI | URL] uri-httpversion {&}

ON conid {&}

HEADER http_header {&}

{,{BINARY} BODY http_body} {&}

{,WITH header_value} {&}

{,WITHOUT header_field} {&}

{,RESPONSE TIMER timer_name} {&}

{,RETURNING STATUS response_status} {&}

{,RETURNING CODE response_code} {&}

{,WITH TIMEOUT period {, ON TIMEOUT GOTO tmo_label}}

Parameters:

uri-httpversion

A character variable, quoted character string or character expression, containing the URI
(Uniform Resource Identifier) of the resource upon which to apply the request, and the HTTP
Version, separated by a single space character. The HTTP Version indicates the format of
the message and the sender’s capacity for understanding further HTTP communication.

conid

An integer variable, integer value or integer expression identifying the connection ID of the
TCP connection on which to issue the request.

http_header

A character variable, quoted character string, character expression or character value list
containing the request header fields.

http_body

A character variable, quoted character string or character expression containing the request
body.

header_value

A character variable, quoted character string, character expression or character value list
containing zero or more request header fields. These request header fields are added to
those specified in "http_header". If a request header field appears in both "http_header" and
"http_value", the field specified here overrides that specified in "http_header".

header_field
Version 1 61

Topic Title: CODE SECTION COMMANDS
A character variable, quoted character string, character expression or character value list
containing the request header field names of fields to be excluded from the request.

timer_name

The name of a timer declared in the Definitions section of the script.

response_status

An integer variable into which the response status of the HTTP response message is loaded
when the HTTP response message is received.

response_code

An integer variable into which the response code of the HTTP response message is loaded
when the HTTP response message is received.

period

An integer variable, integer value or integer expression defining the number of seconds to
wait before an unsatisfied request is timed out. The valid range is 0 - 32767.

tmo_label

A label defined within the current scope of the script, to which control branches if a time-out
occurs.

Examples:

POST URL "http://abc.com/~~pascal/don.gif HTTP/1.0" ON conid &

HEADER sub_header &

,WITH (" Host: abc.com", "Referer: http://abc.com/~~pascal/") &

,WITH TIMEOUT 60, ON TIMEOUT GOTO post_timeout

POST URL "http://dogbert.abebooks.com/abe/IList HTTP/1.0" on
SEARCH_PAGE &

HEADER post_header &

,WITH ("Host: dogbert.abebooks.com", &

"Referer: http://dogbert.abebooks.com/abe/IList") &

,BODY "bu=New+Search"

POST URI "http://abc.com/~pascal/don.gif HTTP/1.0" ON 2 &

HEADER sub_header &
Version 1 62

Topic Title: CODE SECTION COMMANDS
,WITH " Host: abc.com" &

,WITHOUT "Referer Accept-Language"
Version 1 63

Topic Title: CODE SECTION COMMANDS
SYNCHRONIZE REQUESTS Command

Description:

HTTP requests are issued asynchronously. Immediately after an HTTP request has been
issued, the next command in the script is processed. OpenSTA does not wait for a response
to be received for an HTTP request.

This command causes the thread currently executing to be suspended immediately, until
responses have been received for all the requests that have been issued by the thread. It is
only valid within a script that has been defined as MODE HTTP.

The ‘ON TIMEOUT GOTO tmo_label’ clause can be specified to define the label to which
control will be transferred if the request times out.

Format:

[SYNCHRONIZE | SYNCHRONISE] REQUESTS {&}

{, WITH TIMEOUT period, ON TIMEOUT GOTO tmo_label}

Parameters

period

An integer variable, integer value or integer expression defining the number of seconds to
wait before the command is timed out. The valid range is 0 - 32767.

tmo_label

A label defined within the current scope of the script, to which control branches if a timeout
occurs.

Examples:

SYNCHRONIZE REQUESTS

SYNCHRONISE REQUESTS &

, WITH TIMEOUT 60, ON TIMEOUT GOTO timed_out
Version 1 64

Topic Title: CODE SECTION COMMANDS
Input Stream Entry Commands
Input stream entry commands control how the script feeds input to the system under test.
Version 1 65

Topic Title: CODE SECTION COMMANDS
GENERATE Command

Description:

This command loads a random value from a set of values into a variable.

The variable must have a list or range of values associated with it in the Definitions section.
If it is defined as “REPEATABLE RANDOM”, values will be retrieved in the same random
order on every run. If it is defined as “RANDOM”, values will be retrieved in different random
sequences each run.

Format:

GENERATE variable

Parameter:

variable
The name of the variable into which the generated value is to be loaded. The variable must
have a set of values associated with it in the Definitions section.

Example:

GENERATE Part-Number
Version 1 66

Topic Title: CODE SECTION COMMANDS
GET Command

Description:

This command issues an HTTP GET request for a specified resource. It is only valid within a
script that has been defined as MODE HTTP.

The request header fields are obtained from the HEADER clause. These can be modified
using the WITH and WITHOUT clauses.

The HTTP GET request is asynchronous. Immediately after the request is issued, the next
command in the script is processed - it does not wait for a response message to be received.

There is an optional "RESPONSE TIMER" clause, which can be used to specify that a pair of
response timer records are to be written to the statistics log. The first record is written when
the request message is sent, and the second is written on receipt of the response request
message from the server.

The response code in the response message can be retrieved by using the optional
"RETURNING CODE response_code " clause to specify the integer variable to hold the
response code. The variable is loaded when the response message is received from the
server. In addition, the optional "RETURNING STATUS response_status" clause can be
used to specify the integer variable to hold one of two values indicating whether the request
succeeded or failed. There is an SCL include file "response_codes.inc" supplied with
OpenSTA, which defines SCL integer constants for both the response code and response
status values.

The TCP connection used for the request depends upon whether a connection has already
been established for the specified Connection ID using the CONNECT command. If it has,
the request uses that connection. If it has not, a TCP connection will be established to the
host identified by the uri-httpversion, on port 80.

By default, if an error occurs while establishing the TCP connection or issuing the request,
an error message will be written to the audit log and the thread will be aborted. However, if
error trapping is enabled, control will be transferred to the error-handling code.
Version 1 67

Topic Title: CODE SECTION COMMANDS
Format:

GET [URI | URL] uri-httpversion {&}

ON conid {&}

HEADER http_header {&}

{,WITH header_value} {&}

{,WITHOUT header_field} {&}

{,RESPONSE TIMER timer_name} {&}

{,RETURNING STATUS response_status} {&}

{,RETURNING CODE response_code}

Parameters:

uri-httpversion

A character variable, quoted character string or character expression, containing the URI
(Uniform Resource Identifier) of the resource upon which to apply the request, and the HTTP
Version, separated by a single space character. The HTTP Version indicates the format of
the message and the sender’s capacity for understanding further HTTP communication.

conid

An integer variable, integer value or integer expression identifying the Connection ID of the
TCP connection on which to issue the request.

http_header

A character variable, quoted character string, character expression or character value list
containing the request header fields.

header_value

A character variable, quoted character string, character expression or character value list
containing zero or more request header fields. These request-header fields are added to
those specified in "http_header". If a request-header field appears in both "http_header" and
"header_value", the field specified here overrides that specified in "http_header".

header_field

A character variable, quoted character string, character expression or character value list
containing the request header field names of fields to be excluded from the request.

timer_name

The name of a timer declared in the Definitions section of the script.
Version 1 68

Topic Title: CODE SECTION COMMANDS
response_status

An integer variable into which the response status of the HTTP response message is loaded
when the HTTP response message is received.

response_code

An integer variable into which the response code of the HTTP response message is loaded
when the HTTP response message is received.

Examples:

GET URL "http://abc.com/~~pascal/don.gif HTTP/1.0" ON conid &

HEADER sub_header &

,WITH (" Host: abc.com", "Referer: http://abc.com/~~pascal/")

GET URI "http://abc.com/~~pascal/don.gif HTTP/1.0" ON 2 &

HEADER sub_header &

,WITH " Host: abc.com" &

,WITHOUT "Referer Accept-Language"
Version 1 69

Topic Title: CODE SECTION COMMANDS
HEAD Command

Description:

This command issues an HTTP HEAD request for a specified resource. It is only valid within
a script that has been defined as MODE HTTP.

The request header fields are obtained from the HEADER clause. These can be modified
using the WITH and WITHOUT clauses.

The HTTP HEAD request is asynchronous. Immediately after the request is issued, the next
command in the script is processed - it does not wait for a response message to be received.

There is an optional "RESPONSE TIMER" clause, which can be used to specify that a pair of
response timer records are to be written to the statistics log. The first record is written when
the request message is sent, and the second is written on receipt of the response request
message from the server.

The response code in the response message can be retrieved by using the optional
"RETURNING CODE response_code " clause to specify the integer variable to hold the
response code. The variable is loaded when the response message is received from the
server. In addition, the optional "RETURNING STATUS response_status" clause can be
used to specify the integer variable to hold one of two values indicating whether the request
succeeded or failed. There is an SCL include file "response_codes.inc" supplied with
OpenSTA, which defines SCL integer constants for both the response code and response
status values.

The TCP connection used for the request depends upon whether a connection has already
been established for the specified Connection ID using the CONNECT command. If it has,
the request uses that connection. If it has not, a TCP connection will be establised to the
host identified by the uri-httpversion, on port 80.

By default, if an error occurs while establishing the TCP connection or issuing the request,
an error message will be written to the audit log and the thread aborted. However, if error
trapping is enabled, control will be transferred to the error-handling code.
Version 1 70

Topic Title: CODE SECTION COMMANDS
Format:

GET [URI | URL] uri-httpversion {&}

ON conid {&}

HEADER http_header {&}

{,WITH header_value} {&}

{,WITHOUT header_field} {&}

{,RESPONSE TIMER timer_name} {&}

{,RETURNING STATUS response_status} {&}

{,RETURNING CODE response_code}

Parameters:

uri-httpversion

A character variable, quoted character string or character expression, containing the URI
(Uniform Resource Identifier) of the resource upon which to apply the request, and the HTTP
Version, separated by a single space character. The HTTP Version indicates the format of
the message and the sender’s capacity for understanding further HTTP communication.

conid

An integer variable, integer value or integer expression identifying the Connection ID of the
TCP connection on which to issue the request.

http_header

A character variable, quoted character string, character expression or character value list
containing the request-header fields.

header_value

A character variable, quoted character string, character expression or character value list
containing zero or more request-header fields. These request header fields are added to
those specified in "http_header". If a request header field appears in both "http_header" and
"http_value", the field specified here overrides that specified in "http_header".

header_field

A character variable, quoted character string, character expression or character value list
containing the request header field names of fields to be excluded from the request.

timer_name

The name of a timer declared in the Definitions section of the script.

response_status
Version 1 71

Topic Title: CODE SECTION COMMANDS
An integer variable into which the response status of the HTTP response message is loaded
when the HTTP response message is received.

response_code

An integer variable into which the response code of the HTTP response message is loaded
when the HTTP response message is received.

Examples:

HEAD URL "http://abc.com/~~pascal/don.gif HTTP/1.0" ON conid &

HEADER sub_header &

,WITH (" Host: abc.com", "Referer: http://abc.com/~~pascal/")

HEAD URL "http://abc.com/~~pascal/don.gif HTTP/1.0" ON 2 &

HEADER sub_header &

,WITH " Host: abc.com" &

,WITHOUT "Referer Accept-Language"
Version 1 72

Topic Title: CODE SECTION COMMANDS
NEXT Command

Description:

This command loads a variable with the next sequential value from a set of values. This
could be either a list or a range associated with that variable, or from a file associated with
the variable.

When the NEXT command is first executed, it will retrieve the first value. The set is treated
as cyclic: when the last value has been retrieved, the next value retrieved will be the first in
the set.

This command may be used to reset the value pointer associated with a variable so that the
first NEXT command to be executed after the RESET retrieves the first value in the set.

The variable must have a set of values or a file associated with it in the Definitions section.

Format:

NEXT variable

Parameter:

variable
The name of a variable into which the next value from the set is loaded. The variable must
have a set of values or a file associated with it in the Definitions section.

Example:

NEXT Emp-Name
Version 1 73

Topic Title: CODE SECTION COMMANDS
POST Command

Description:

This command issues an HTTP POST request for a specified resource. It is only valid within
a script which has been defined as MODE HTTP.

The request field headers to be used in the request are obtained from the HEADER clause,
appropriately modified by the WITH and WITHOUT clauses, if specified.

The HTTP POST request is asynchronous. Immediately after the request is issued, the next
command in the script is processed - it does not wait for a response message to be received.

There is an optional "RESPONSE TIMER" clause, which can be used to specify that a pair of
response timer records are to be written to the statistics log. The first record will be written
when the request message is sent, and the second written on receipt of the response
request message from the server.

The status code in the response message may be retrieved by using the optional
"RETURNING CODE response_code" clause to specify the integer variable to hold the
response code. The variable is loaded when the response message is received from the
server. In addition, the optional "RETURNING STATUS response_status" clause may be
used to return one of two values indicating whether the request succeeded or failed. There is
an SCL include file "response_codes.inc" supplied with OpenSTA, that defines SCL integer
constants for both the response code and response status values.

The TCP connection used for the request depends upon whether a connection has already
been established for the specified Connection ID using the CONNECT command. If it has,
the request uses that connection. If it has not, a TCP connection will be established to the
host identified by the uri-httpversion, on port 80.

By default, if an error occurs while establishing the TCP connection or issuing the request,
an error message is written in the audit log and the thread is aborted. However, if error
trapping is enabled, control will be transferred to the error-handling code.

The "ON TIMEOUT GOTO tmo_label" clause can be specified to define label to which
control will be transferred if the request times out.
Version 1 74

Topic Title: CODE SECTION COMMANDS
Format:

POST [URI | URL] uri-httpversion {&}

ON conid {&}

HEADER http_header {&}

{,{BINARY} BODY http_body} {&}

{,WITH header_value} {&}

{,WITHOUT header_field} {&}

{,RESPONSE TIMER timer_name} {&}

{,RETURNING STATUS response_status} {&}

{,RETURNING CODE response_code} {&}

{,WITH TIMEOUT period {, ON TIMEOUT GOTO tmo_label}}

Parameters:

uri-httpversion

A character variable, quoted character string or character expression, containing the URI
(Uniform Resource Identifier) of the resource upon which to apply the request, and the HTTP
Version, separated by a single space character. The HTTP Version indicates the format of
the message and the sender’s capacity for understanding further HTTP communication.

conid

An integer variable, integer value or integer expression identifying the connection ID of the
TCP connection on which to issue the request.

http_header

A character variable, quoted character string, character expression or character value list
containing the request header fields.

http_body

A character variable, quoted character string or character expression containing the request
body.

header_value

A character variable, quoted character string, character expression or character value list
containing zero or more request header fields. These request header fields are added to
those specified in "http_header". If a request header field appears in both "http_header" and
"http_value", the field specified here overrides that specified in "http_header".

header_field
Version 1 75

Topic Title: CODE SECTION COMMANDS
A character variable, quoted character string, character expression or character value list
containing the request header field names of fields to be excluded from the request.

timer_name

The name of a timer declared in the Definitions section of the script.

response_status

An integer variable into which the response status of the HTTP response message is loaded
when the HTTP response message is received.

response_code

An integer variable into which the response code of the HTTP response message is loaded
when the HTTP response message is received.

period

An integer variable, integer value or integer expression defining the number of seconds to
wait before an unsatisfied request is timed out. The valid range is 0 - 32767.

tmo_label

A label defined within the current scope of the script, to which control branches if a time-out
occurs.

Examples:

POST URL "http://abc.com/~~pascal/don.gif HTTP/1.0" ON conid &

HEADER sub_header &

,WITH (" Host: abc.com", "Referer: http://abc.com/~~pascal/") &

,WITH TIMEOUT 60, ON TIMEOUT GOTO post_timeout

POST URL "http://dogbert.abebooks.com/abe/IList HTTP/1.0" on
SEARCH_PAGE &

HEADER post_header &

,WITH ("Host: dogbert.abebooks.com", &

"Referer: http://dogbert.abebooks.com/abe/IList") &

,BODY "bu=New+Search"

POST URI "http://abc.com/~pascal/don.gif HTTP/1.0" ON 2 &

HEADER sub_header &

,WITH " Host: abc.com" &
Version 1 76

Topic Title: CODE SECTION COMMANDS
,WITHOUT "Referer Accept-Language"
Version 1 77

Topic Title: CODE SECTION COMMANDS
RESET Command

Description:

This command resets the value pointer for a variable to the first value in the associated value
set. This could be either a list or a range associated with that variable, or from a file
associated with the variable. In the case of a repeatable random variable, the variable’s seed
may be reset to a specified or defaulted value.

The RESET command does not alter the contents of the variable. The value to which the
variable has been reset is only retrieved on execution of the first NEXT command after the
RESET command.

Format:

RESET variable{, SEED=value}

Parameters:

variable
The name of the variable whose value pointer is to be reset. The variable must have a set or
a file associated with it in the Definitions section.

value
An integer numeric literal in the range –2147483648 to +2147483647. If the “SEED” clause
is omitted from the RESET command, the seed variable will be reset to the value specified
when the variable was defined, or to the value specified by a previous RESET command.

Examples:

RESET Emp-Name

RESET Per-Num, SEED=-8415
Version 1 78

Topic Title: CODE SECTION COMMANDS
SET Command

Description:

This command allows a value to be assigned to an integer or character variable. The values
may be any integer or character values or a function reference, but their data types must
match that of the variable. The values may be derived as a result of arithmetical operations.

If the variable is an integer variable, the assignment expression may be another integer
variable or a numeric literal, or a complex arithmetic expression consisting of two or more
integer values or variables, each separated by an operator. The following operators are
supported:

The value resulting from a division operation will be an integer, i.e. the remainder will be
ignored. The modulo calculation is the converse of this operation, i.e. the variable will be set
to the value of the remainder. For example:

SET A = B / C

SET D = B | C

If B = 13 and C = 2, then A will be set to 6 and D to 1.

Parentheses may be specified to determine the order of precedence. If parentheses are not
specified, then the expression is evaluated from left to right with no other order of
precedence applied.

Care should be taken when using arithmetic expressions, since there is no check for integer
overflow at run-time. If an integer overflow occurs a script error will be reported.

If the variable is a character variable, the assignment expression may consist of one or
more character variables or literals. Operands are separated by the addition operator if the
operands are to be added together; if the second operand is to be subtracted from the first,
they are separated by the subtraction operator.

The character function ~EXTRACT may be referenced within a SET command to extract a
substring from a character variable or quoted character string into a character variable.

The integer function ~LOCATE may be referenced within a SET command to load the offset
of a substring within a character variable or quoted character string into an integer variable.

The “ON ERROR GOTO err_label” clause can be specified to define a label to which control
should be transferred in the event of an error. An error could occur if, for example, an
~EXTRACT function is specified with an invalid offset, or an attempt is made to divide by
zero.

Format:

+ for addition – for subtraction

* for multiplication / for division

| for modulo
Version 1 79

Topic Title: CODE SECTION COMMANDS
SET variable = operand1 { operator operand &
{operator operand...} } {ON ERROR GOTO err_label}

Parameters:

variable
The name of an integer or character variable into which the result of the operation is to be
placed.

operand1
The value from which the initial operation result will be taken. For a character SET
command, the operand may be a character variable, quoted character string or character
function reference. For integer SET commands, the operand may be an integer function
reference, literal or variable.

operator
The operation which is to be performed upon the previous and following operands. For
character SET commands, it may be “+” to add the first operand to the second, or “–” to
subtract the second operand from the first. For integer SET commands, all operators are
valid.

operand
The variable or value which is used to modify the current value for “variable”. For a character
SET command, the operand may be a character variable, quoted character string or
character function reference. For integer SET commands, the operand may be an integer
literal or variable.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs.

Examples:

SET STRING1 = STRING2 - "ERROR"

SET STRING1 = STRING2 + STRING3 + STRING4

SET STRING1 = STRING2 - ’"END MARKER"’ &
ON ERROR GOTO Error_report
Version 1 80

Topic Title: CODE SECTION COMMANDS
Output Stream Handling Commands
Output stream handling commands control how thread scripts examine and manipulate
output from the system, either within the script itself or by saving the data for later
comparison.
Version 1 81

Topic Title: CODE SECTION COMMANDS
~EXTRACT Command

Description:

This command is a function and can only be referenced within a SET command. It returns
the portion of the source string identified by the specified offset and length.

If the string identified by the offset and length overlaps the end of the source string, only the
characters up to the end of the source string will be returned.

If the offset does not lie within the bounds of the source string when the script is executed, a
message will be written to the audit log, indicating that a bad parameter value has been
specified. Script execution will then be aborted, or the specified action taken if error trapping
is enabled via the ON ERROR command.

Format:

~EXTRACT (offset, length, string)

Return Value:

The character substring extracted from the source string.

Parameters:

offset
An integer variable or value defining the offset in the source string of the first character that is
to be extracted. The first character of the source string is at offset zero.

length
An integer variable or value defining the number of characters to extract to form the
substring.

string
The character value or character variable from which the substring is to be extracted.

Example:

SET NameCode = ~EXTRACT (0, 4, Name) + RunningNo
Version 1 82

Topic Title: CODE SECTION COMMANDS
FORMAT Command

Description:

This command translates characters from one format into another. This makes it easier to
manipulate character strings that have been output from the system under test, or which are
to be input into that system.

In all translations, the command requires three elements:

1. The target variable that will receive the translated value. This may be either a
character variable or an integer variable.

2. A format string defining the type of translation required. For an integer target variable,
the format string must only contain a single format identifier; for a character variable,
the format string may contain multiple identifiers and/or ordinary characters that are
to be copied unchanged to the target variable.

3. One or more values to be translated; these may be specified as variables or as literal
text. A single value must be specified for each of the format identifiers in the format
string; the data type of each must agree with the associated format identifier and the
data type of the target variable, as discussed below. Note that any discrepancies in
this respect are detected at run-time and are not picked up by the compiler.

The following types of translation are supported:

%U – Translate each alphabetic character in the input string into its uppercase
equivalent. Both source and target variables must be character variables. The source
string if necessary is truncated to fit the target variable.

%L – Translate each alphabetic character in the input string into its lowercase
equivalent. Both source and target variables must be character variables. The source
string if necessary is truncated to fit the target variable.

%D – Convert a character string date value into numeric format (representing the
number of days since the Smithsonian base date of 17–Nov–1858). The target
variable must be an integer variable, and the source variable a character string
containing a valid date; this can be either in the default style for the platform on which
the script is running or in the fixed format “DD–MMM–CCYY” (where “CC” is
optional).

This format identifier may also be used to convert a numeric date value (representing
the number of days since the Smithsonian base date of 17–Nov–1858) into a
character string in the fixed format “DD–MMM–CCYY”. The source variable must be
an integer variable and the target variable a character string, which will be truncated if
necessary.

%T – Convert a character string time value into a numeric format (representing the
number of 10 milli-second ‘ticks’ since midnight). The target variable must be an
integer variable, and the source variable a character string containing a valid time;
Version 1 83

Topic Title: CODE SECTION COMMANDS
this can be either in the default style for the platform on which the script is running or
in the form “HH:MM:SS.MMM” (where “.MMM” is optional).

This format identifier may also be used to convert a numeric time value (representing
the number of 10 milli-second ticks since midnight) into a character string in the fixed
format “HH:MM:SS.MMM”. The source variable must be an integer variable and the
target variable a character string, which will be truncated as required.

Format:

FORMAT (target-variable, format-string, variable {,variable ...}) {&}
{{,}ON ERROR GOTO err_label}

Parameters:

target-variable
The name of an integer or character variable into which the result of the operation is placed.

format-string
A quoted character string containing the string to be formatted and containing a number of
format identifiers. The format identifiers must be compatible with the data types of the
variables that follow.

variable
One or more integer or character variables or literals to be translated. The number of
variables must correspond with the number of format identifiers in the format string. The data
type of each variable must match the corresponding format identifier and the target variable.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs.

Examples:

FORMAT (date_string, "The date is %D today, and the time is %T", &
int-date, int-time), ON ERROR GOTO end

FORMAT (date_value, "%D", char-date), ON ERROR GOTO format_err

FORMAT (uppercase_string, "Name in uppercase is %U", lowercase_string)
Version 1 84

Topic Title: CODE SECTION COMMANDS
LOAD RESPONSE_INFO BODY Command

Description:

This command loads a character variable with all or part of the data from an HTTP response
message body for a specified TCP connection. It is used after a GET, HEAD or POST
command.

OpenSTA will automatically wait until any request on the specified connection ID is complete
before executing this command. It is not necessary for the script to do this explicitly.

If the data string is too long to fit into the target variable, it will be truncated.

The WITH clause can be used to specify a DOM (Document Object Model) signature
identifying the data to be returned. If this clause is omitted, the full response message body
is loaded into the target variable.

Format:

LOAD RESPONSE_INFO BODY ON conid INTO variable {&}

{,WITH identifier}

Parameters:

conid

An integer variable, integer value or integer expression identifying the Connection ID of the
TCP connection on which the HTTP response message will be received.

variable

The name of a character variable into which the HTTP response message body, or the
selected part of it, are loaded.

identifier

A character variable, quoted character string or character expression containing a DOM
(Document Object Model) signature identifying the data to be retrieved from the response
message body.

Example:

LOAD RESPONSE_INFO BODY ON 1 INTO post_body**
Version 1 85

Topic Title: CODE SECTION COMMANDS
LOAD RESPONSE_INFO HEADER Command

Description:

This command loads a character variable with all or some of the HTTP response message
header fields for a specified TCP connection.

OpenSTA will automatically wait until any request on the specified Connection ID is complete
before executing this command. It is not necessary for the script to do this explicitly.

If the data string is too long to fit into the target variable, it will be truncated.

The WITH clause can be used to specify the names of one or more header fields whose
values are to be retrieved from the HTTP response message. If this clause is omitted, all the
response message header fields are retrieved.

Format:

LOAD RESPONSE_INFO HEADER ON conid INTO variable {&}

{,WITH identifier}

Parameters:

conid

An integer variable, integer value or integer expression identifying the connection ID of the
TCP connection on which the HTTP response message will be received.

variable

The name of a character variable into which the HTTP response message headers, or the
selected headers, are loaded.

identifier

A character variable, quoted character string or character expression containing the names
of one or more response message header fields to be retrieved.

Example:

LOAD RESPONSE_INFO HEADER ON 4 INTO resp_headers
Version 1 86

Topic Title: CODE SECTION COMMANDS
~LOCATE Command

Description:

This command is a function and can only be referenced within a SET command. It returns an
integer value, corresponding to the offset of the specified substring in the source string. The
offset of the first character in the source string is zero. If the substring is not found, the
function returns a value of –1.

By default, the matching is case sensitive. The strings “London” and “LONDON”, for
example, would not produce a match, because the case of the characters is not the same.
This can be overridden by specifying the “, CASE_BLIND” clause.

The source string is scanned from left to right. If the substring appears more than once in the
source string, the function will always return the offset of the first occurrence.

Format:

~LOCATE (substring, string) {&}
{,CASE_BLIND}

Return Value:

The offset of the substring in the source string. If the substring was not found, then a value of
–1 is returned.

Parameters:

substring
The character value defining the substring to be located in the source string. This may be a
character variable or quoted character string.

string
The character value to be searched for the specified substring. This may be a character
variable or quoted character string.

Example:

SET Offset = ~LOCATE (Separator, TEST), CASE_BLIND
Version 1 87

Topic Title: CODE SECTION COMMANDS
Flow Control Commands

Flow control commands determine which sections of a script are processed, and in what
order.
Version 1 88

Topic Title: CODE SECTION COMMANDS
CALL Command

Description:

This command calls a subroutine from within a script. Subroutines must follow the main code
section and must not be embedded within it. They share the variable definitions of the main
module.

It is not possible to branch into or out of a subroutine, because a label cannot be referenced
outside of the main module or subroutine in which it occurs. This does mean, however, that
each subroutine enables a script to define up to 255 labels in addition to those used in the
main code.

A maximum of eight parameters may be passed from the calling code to the called
subroutine. The parameters passed may be character or integer variables, literals or quoted
character strings. The calling code must pass exactly the same number of parameters to the
called subroutine as the called subroutine has defined in its SUBROUTINE statement. The
names of the variables in the call need not be the same as in the subroutine parameter list,
but the data types of each of the parameters must match. Failure to comply with these
conditions will result in a script error being generated.

The values of the variables defined as parameters in the subroutine definition are not copied
back to the variables in the call, on return from the subroutine. However, if the same variable
names are used in the call and the subroutine parameter list, the value of the variable in the
call will be changed by a change in the subroutine; this is because the calling code and the
called subroutine share the same data definitions. Conversely, if different variable names are
used, any changes made to variables within the subroutine will not affect the variables in the
call.

Format:

CALL subroutine {[parameter{, parameter ...}]}

Parameters:

subroutine
The name of the called subroutine. The name must be a valid CYRANO dataname.

parameter
A character variable, integer variable, integer value or a quoted character string. Up to 8
parameters may be declared in the CALL command. There must be the same number of
parameters in this list as are in the subroutine’s definition, and the data types of the
parameters must match.

Examples:

CALL DATE_CHECK

CALL CREATE_FULL_NAME [char_first,char_second,char_title]
Version 1 89

Topic Title: CODE SECTION COMMANDS
CALL SCRIPT Command

Description:

This command calls a thread script from another thread script. When the command is
executed, control is transferred to the called script; when the called script exits, control is
returned to the calling script, optionally returning a status from the called script. There is no
limit on the number of scripts that may be referenced by any one script.

In general, a called script is considered as an extension to the calling script, and any
changes made in the called script are propagated back to the calling script on exit. However,
certain changes (e.g. further ON ERROR handlers) only remain in force for the duration of
the called script (or scripts called by it); the original condition is re-established when control
is returned to the calling script.

For thread scripts, a maximum of eight parameters may be passed from the calling script to
the called script. An omitted parameter is specified by two consecutive commas “,,”. The
calling script must pass exactly the same number of parameters to the called script as the
called script has defined in its ENTRY statement (accounting for any omitted parameters). In
addition, the data types of each of the parameters must match. Failure to comply with these
conditions will result in a script error being generated.

The values of the parameters are passed from the caller into the variables defined within the
ENTRY statement of the called script. Any modifications to the values of the variables are
copied back to the caller on return from the called script.

An optional status value can be returned from the called script by using the “RETURNING”
clause to specify the integer variable which is to hold the return status value.

By default, if an error occurs in a called script, an error message is written to the audit log
and the thread aborts; control is not returned to the calling script. However, if error trapping
is enabled in the calling script and the error was a script error, then control will be returned to
the calling script’s error-handling code.

The “ON ERROR GOTO err_label” clause can be specified to define a label to which control
should be transferred in the event of an error while attempting to call the script.

Format:

CALL SCRIPT name {&}
{[parameter{, parameter ...}]} {&}
{RETURNING status} {ON ERROR GOTO err_label}

Parameters:

name
A character variable or quoted character string defining the name of the script to be called.
The name must be a valid CYRANO dataname.
Version 1 90

Topic Title: CODE SECTION COMMANDS
parameter
A character variable, integer variable, quoted character string, integer value or file ID to be
passed to the called script. A maximum of 8 parameters may be passed between scripts.

status
An integer variable to receive the returned status from the called script. If no status is
returned from the called script, then this variable will contain the last status returned from any
called script.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs.

Examples:

CALL SCRIPT Script-Name

CALL SCRIPT "TEST"

CALL SCRIPT "CALC_TAX" [COST, RATE, TAX]

CALL SCRIPT "GET_RESPONSE" returning Response ON ERROR GOTO Problem
Version 1 91

Topic Title: CODE SECTION COMMANDS
CANCEL ON Command

Description:

This command terminates the automatic trapping of script errors, which is enabled with the
ON ERROR command. Any script errors encountered will cause the thread to be aborted.

This command will only affect automatic trapping of script errors within the current script or
scripts called by it. On exit from this script, any ON ERROR handler established by a calling
script will be re-established.

Format:

CANCEL ON {ERROR}

Parameters:

None

Examples:

CANCEL ON

CANCEL ON ERROR
Version 1 92

Topic Title: CODE SECTION COMMANDS
DETACH Command

Description:

This command causes the current thread to exit. The program exits from any scripts or
subroutines that have been called (including nested calls) until control returns to the primary
script. The thread is then detached from the run-time component.

Format:

DETACH {THREAD}

Parameters:

None

Examples:

DETACH

DETACH THREAD
Version 1 93

Topic Title: CODE SECTION COMMANDS
DO Command

Description:

The DO and ENDDO commands allow a set of commands to be repeated a fixed number of
times. The section of a script to be repeated is terminated by an ENDDO command.

Format:

DO variable = value1, value2 {, step}
command{s}

ENDDO

Parameters:

variable
The name of the control or index variable that is adjusted each time the loop executes. The
adjustment is determined by the value of the step variable. This must be an integer variable.

value1
The starting value of the control variable. This must be either an integer variable or an
integer value.

value2
The terminating value of the control variable. This must be an integer variable or value, and
may be either higher or lower than value1. When the control variable contains a value that is
greater than this value (or lower if the step is negative), the loop will be terminated.

step
An integer variable or value determining the value by which the control variable or index
variable is incremented each time the loop executes. If value2 is less than value1, then the
step value must be negative. If a step variable is not specified, then the step value will
default to 1.

Examples:

DO Empno = 1, 1000
NEXT Name
LOG ’Employee number: ’, Empno, &

’; Name: ’, Name
ENDDO

DO Empno = START, END, 10
NEXT Name
LOG ’Employee number: ’, Empno, &

’; Name: ’, Name
ENDDO
Version 1 94

Topic Title: CODE SECTION COMMANDS
END SUBROUTINE Command

Description:

This command terminates a subroutine. It must follow all other executable commands within
the subroutine. The only statements that may follow an END SUBROUTINE command are a
comment, a new SUBROUTINE command or an INCLUDE command; the included script
must contain more subroutine definitions.

A subroutine is initiated by the SUBROUTINE command.

Format:

END SUBROUTINE

Parameters:

None

Example:
END SUBROUTINE
Version 1 95

Topic Title: CODE SECTION COMMANDS
ENTRY Command

Description:

This command, if specified, must be the first item in the Code section of the thread script,
excluding format characters and comments. It identifies which variables are to receive
values passed as parameters from a calling script

It is advisable that variables declared in the ENTRY command do not have an associated
value list or range or file. Values passed in this way will be overwritten when script
initialization takes place following the ENTRY command.

Format:

ENTRY [parameter{, parameter ...}]

Parameter:

parameter
A character variable (of up to 50 characters in length), integer variable or file ID declared in
the Definitions section of the script. Up to 8 parameters may be declared in the ENTRY
command. There must be the same number of parameters in this list as are passed to the
script (including omitted parameters), and the data types of corresponding parameters must
match.

Example:

ENTRY [DATE_PARAM, TIME_PARAM, CODE_PARAM]
Version 1 96

Topic Title: CODE SECTION COMMANDS
EXIT Command

Description:

This command causes execution of the current script to terminate immediately. No further
input will be provided from the script file and no commands executed.

An optional status value can be returned when the script in question has been called from
another script. This is achieved by using the status variable to place a value into the return
status variable specified on the call to this script. If no status is specified, but the caller is
expecting one, then the status returned will be that returned by the last script which exited
with a status. This allows a status to be retrieved from a deeply nested script where no
explicit status returning has been employed.

At run-time, a script is automatically terminated when the end of the script is reached. It is
not necessary to include an EXIT command as the last command in a script, to terminate
script execution.

If the script has been called, using the CALL SCRIPT command, execution of the calling
script will resume at the command immediately following the CALL SCRIPT command.

When an EXIT command is processed and there are no other threads executing the script,
the script data is discarded. However, if the “,KEEPALIVE” option is specified on the EXIT
command, then the script data that will not be deleted even if there are no other threads
executing it. This allows subsequent threads to execute the script and access any script data
set up by a previous thread.

Format:

EXIT {status} {,KEEPALIVE}

Parameter:

status
An integer variable or integer value to be returned as the status from this script to the caller.
The status will be returned into the integer variable specified on the CALL command.

Examples:

EXIT

EXIT RETURN-STATUS
Version 1 97

Topic Title: CODE SECTION COMMANDS
GOTO Command

Description:

This command transfers control to a specified script label. The transfer of control is
immediate and unconditional.

Conditional branches may be made using the IF command.

Format:

GOTO label

Parameter:

label
A label defined within the current scope of the script.

Examples:

GOTO Start

GOTO End-Of-Script
Version 1 98

Topic Title: CODE SECTION COMMANDS
IF Command

Description:

This command performs tests on the values of variables against other variables or literals,
and transfers control to a specified label depending upon the outcome of the tests.

Alternatively, structured IF commands may be used to perform one or more commands
depending upon the success or failure of the tests.

By default, the matching is case sensitive. The strings “London” and “LONDON”, for
example, would not produce a match, because the case of the characters is not the same.
This can be overridden by specifying the “, CASE_BLIND” clause.

Format:

1. IF condition GOTO label

2. IF condition THEN
commands{s}

{ ELSEIF condition THEN
command{s} }

:
:

{ ELSEIF condition THEN
command{s} }

{ ELSE
command{s} }

ENDIF

Parameters:

condition
A condition of the following format:

{NOT}(operand1 operator operand2 {, CASE_BLIND}) &
{AND/OR condition ...}

The two operands may each be a variable, a quoted character string or an integer value.

The option “CASE_BLIND” may be specified for “operand2”, to request a case-insensitive
comparison of the operands.

“NOT” inverts the result of the bracketed condition that it precedes.

The binary operators are:

= operand1 equals operand2

<> operand1 does not equal operand2

< operand1 is less than operand2
Version 1 99

Topic Title: CODE SECTION COMMANDS
All conditions are evaluated from left to right.

label
A label defined in the current scope of the script.

command
Any number of script commands – including further IF or DO commands, provided that the
maximum nesting level of 100 is not exceeded.

Example:

IF (NOT(isub=10) AND (NOT(isub=99))) THEN
LOG "...continued"

ELSE
LOG " Completed loop"

ENDIF

<= operand1 is less than or equal to operand2

> operand1 is greater than operand2

>= operand1 is greater than or equal to operand2

^ operand1 contains operand2

CONTAINS operand1 contains operand2

<^> operand1 does not contain operand2

NOT CONTAINS operand1 does not contain operand2

NOT_CONTAINS operand1 does not contain operand2
Version 1 100

Topic Title: CODE SECTION COMMANDS
ON ERROR Command

Description:

This command allows script errors – which would normally cause the thread being executed
to abort – to be captured, and script execution to be resumed at a predefined label. The ON
ERROR handler is global to all sections of the script; it is propagated into all called
subroutines and scripts.

The ON ERROR command captures any errors which occur either in the script within which
it was declared or within any lower level scripts called by it. All script errors, such as a bad
parameter error on the ~EXTRACT command, or an attempt to call a non-existent script,
may be intercepted and dealt with by this command.

If a script error is encountered, then a message will be written to the audit log, identifying and
locating where the error occurred. If the error has occurred in a script at a lower level than
that within which the ON ERROR command was declared, then all scripts will be aborted
until the required script is found.

An ON ERROR handler may be overridden by the “ON ERROR GOTO” or “ON TIMEOUT
GOTO” clause for the duration of a single command. It may also be overridden by the ON
ERROR command within a called script or subroutine; such a modification will affect only
those scripts and subroutines at that nesting level or lower. On exit from the script or
subroutine, the previously defined ON ERROR handler will be re-established.

When ON ERROR checking is established, it can be disabled by using the CANCEL
command, as follows:

CANCEL ON ERROR

Format:

ON ERROR GOTO label

Parameter:

label
The name of the label within the current scope of the script, to which control branches if a
script error is encountered.

Example:

ON ERROR GOTO SCRIPT-ERROR
Version 1 101

Topic Title: CODE SECTION COMMANDS
RETURN Command

Description:

This command returns control from a called subroutine to the instruction following the call to
that subroutine.

Format:

RETURN

Parameters:

None

Example:

RETURN
Version 1 102

Topic Title: CODE SECTION COMMANDS
SUBROUTINE Command

Description:

This command defines the start of a discrete section of code which is bounded by the
SUBROUTINE and END SUBROUTINE commands.

Subroutines are called from the main code with a command of the format “CALL name”.
They return control to the main code by use of the RETURN command. A maximum of 255
subroutines may be defined within a script.

Subroutines share the same variable definitions as the main code but have their own labels.
A label may not be referenced outside the main module or outside the subroutine in which it
occurs. This has the effect of disabling branching into and out of subroutines, and also
means that each subroutine may use a further 255 labels in addition to those used in the
main code.

Format:

SUBROUTINE name {[parameter{, parameter..}]}

Parameters:

name
The name of the subroutine. This must be a valid CYRANO dataname, and must be unique
within the script.

parameter
A character variable or integer variable declared in the Definitions section of the script. Up to
8 parameters can be declared in the SUBROUTINE command. There must be the same
number of parameters in this list as there are in the subroutine call, and the data types of the
parameters must match.

Examples:

SUBROUTINE GET_NEXT_VALUE

SUBROUTINE CREATE_FULL_NAME [sub_char_1, sub_char_2, sub_char_3]
SET full_name = sub_char_3 + &

sub_char_1 + sub_char_2
RETURN

END SUBROUTINE
Version 1 103

Topic Title: CODE SECTION COMMANDS
File Handling Commands
File handling commands help scripts and external data files exchange data.
Version 1 104

Topic Title: CODE SECTION COMMANDS
CLOSE Command

Description:

This command closes an external data file. The file must have already been opened by the
OPEN command.

The “ON ERROR GOTO err_label” clause can be specified to define a label to which control
should be transferred in the event of an error.

Format:

CLOSE fileid {{,}ON ERROR GOTO err_label}

Parameters:

fileid
The name associated with the file when it was opened.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs.

Example:

CLOSE datafile ON ERROR GOTO Close_error
Version 1 105

Topic Title: CODE SECTION COMMANDS
OPEN Command

Description:

This command opens an external data file (or creates a new one) and associates a
CYRANO dataname with it, for future reference.

The data file can be opened for INPUT, OUTPUT or APPEND access. While the file is open
for OUTPUT or APPEND access, it may not be opened by any other threads, unless the
“,SHARED” clause is specified. This clause allows multiple threads to open an external file
concurrently; they use the same ‘stream’, so that reads from or writes to that file by the
threads are interleaved. A shared file may be open for INPUT access by one group of
threads and for OUTPUT or APPEND access by another group at the same time. Note that
more than one thread may open a file for INPUT access, even if the “,SHARED” clause is not
specified; in this case, reads from the file are totally independent for each thread.

If the “,COMMA-SEPARATED” clause is specified, the file will be opened as a
comma-separated data file. This means that comma characters within the record are treated
as being significant; they are used to break the record up into its constituent fields. This
clause can be used when opening SCL data files for input or output. External data files that
are created from an OPEN command using the “,COMMA-SEPARATED” clause, contain
records that are all ASCII text – including integer fields. Integer fields are automatically
converted back into their binary representation by the READ command. Conversely, integers
are converted into ASCII when written to the file using the WRITE command.

If the “,BINARY” clause is specified, then the file will be opened as a binary file rather than a
text file. Binary files differ from text files in that there is no delimiting of individual records.
The data is organized as a continuous stream and is written to and read from the file as
such.

For a text file, a newline character will be added to the end of each record written to the file to
act as a record delimiter. When reading records from a text file, data will be read up to but
not including the newline character. The newline character will be skipped over to position
the file at the start of the next record to be read.

The record read will be truncated as required to fill the specified variable.

Attempting to write to a data file opened for INPUT access will cause a script error. In the
same way, a data file opened for OUTPUT or APPEND access cannot be read from.

If “OUTPUT” access is specified, then under normal circumstances, a new file is created.
However, if the “,SHARED” clause is also specified, a new file will only be created by the
thread which first executes the command. All other threads will write to this file.

A maximum of 10 external data files may be open for each thread at any one time.
Attempting to open more than this number will result in a script error being reported.

The “ON ERROR GOTO err_label” clause can be specified to define a label to which control
should be transferred in the event of an error. This must be the last clause in the statement.
Version 1 106

Topic Title: CODE SECTION COMMANDS
Format:

OPEN filename AS fileid {FOR access} ,Sharing {,BINARY} {&}
{,COMMA-SEPARATED | NO-COMMA} {&}
{ON ERROR GOTO err_label}

Parameters:

filename
A character variable or quoted character string containing the filename of the file to open.

 fileid
A CYRANO dataname associated with the file when it is opened; it is used to identify the file
in future references. The “fileid” must be declared in a FILE statement in the Definitions
section of the script.

access
The type of access which is to be allowed to the file. This can be “INPUT” (the default),
“OUTPUT” or “APPEND”.

sharing
Can be set to “SHARED” or “NOSHARED”, and defaults to “NOSHARED”.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs.

Examples:

OPEN "\usr\james\data.dat" AS datafile &
FOR APPEND

OPEN NEW_DATA AS datafile FOR INPUT &
ON ERROR GOTO file-error
Version 1 107

Topic Title: CODE SECTION COMMANDS
READ Command

Description:

This command reads a single record from an external file that is currently open for input, into
a variable. If the file record is longer than the variable, the record data is truncated.

If the external data file was opened using the “COMMA-SEPARATED” clause on the OPEN
command, the compiler checks that data is read as comma-separated records; it reports an
error if data is not read into a record variable.

If the file was opened with the “BINARY” option specified, then a record consists of sufficient
data to fill the specified variable.

If the “BINARY” option was not specified when the file was opened, then the record read will
be delimited by a newline character in the file. This newline character is used purely as a
record delimiter and does not form part of the record.

By default, the file will be rewound when an “End-of-File” status is returned by the READ
command. This action may be modified by use of the “AT END GOTO label” clause.

The file is read sequentially.

Format:

READ variable FROM fileid
{AT END GOTO label} {ON ERROR GOTO err_label}

Parameters:

variable
A character variable into which the next record from the file is read.

fileid
The dataname associated with the file when it was opened.

label
A label within the current scope of the script, to which script execution will branch if the
“End-of-File” status is encountered.

err_label
A label within the current scope of the script, to which script execution will branch if an error
occurs.

Examples:

READ data_record FROM datafile

READ data FROM datafile AT END GOTO EXIT_LABEL &
ON ERROR GOTO read_error
Version 1 108

Topic Title: CODE SECTION COMMANDS
REWIND Command

Description:

This command causes an external data file to be rewound. The file must already have been
opened by the OPEN command. If the file is open for APPEND or OUTPUT access, it will be
re-initialized when the first Write operation following the REWIND command is made –
providing the file has not been closed and reopened in the interim.

The “ON ERROR GOTO err_label” clause can be specified to define a label to which control
should be transferred in the event of an error.

Format:

REWIND fileid {ON ERROR GOTO err_label}

Parameters:

fileid
The name associated with the file when it was opened.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs.

Examples:

REWIND datafile

REWIND datafile ON ERROR GOTO Error_report
Version 1 109

Topic Title: CODE SECTION COMMANDS
WRITE Command

Description:

This command writes the specified variable, as a record, to the specified file.

The WRITE command may only be used on external data files which have been opened for
APPEND or OUTPUT access. Attempting to write to an external data file which has not been
opened for either of these access types will cause a script error to be reported.

If the external data file was opened using the “COMMA-SEPARATED” clause on the OPEN
command, the compiler checks that data is written as comma-separated records; it reports
an error if the data to be written is not a record variable.

If the file has been opened as a text file (i.e. the “BINARY” option was not specified on the
OPEN command), then a newline character will be appended to the record before it is written
to the file, to act as a record delimiter. For this reason, records written to text files should not
themselves contain newline characters, because they will be treated as delimiters when the
record is read again.

The “ON ERROR GOTO err_label” clause can be specified to define a label to which control
should be transferred in the event of an error.

Format:

WRITE variable &
TO fileid {&}
{ON ERROR GOTO err_label}

Parameters:

variable
The name of a character variable, or a quoted character string, which is to be written to the
specified file.

fileid
The name associated with the file when it was opened.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs.

Examples:

WRITE data_record TO datafile

WRITE ’"Date" "Time" "Order" "Description" "Qty"’ TO datafile
Version 1 110

Topic Title: CODE SECTION COMMANDS
Formal Test Control Commands
Formal test control commands provide formal support for tracking the results of each test, so
that it is possible to see easily how well the testing is going.
Version 1 111

Topic Title: CODE SECTION COMMANDS
END TEST-CASE Command

Description:

The END TEST-CASE command terminates a section of the script that starts with a START
TEST-CASE command, to create an individual test case.

If the END TEST-CASE command is reached during execution of the script, the test case is
considered to have succeeded, and the message specified in the test definition is sent to the
report log.

Note: Test cases cannot be nested. However, there is no restriction on calling another script
that contains test cases, from within a test case section.

Format:

END TEST-CASE

Parameters:

None

Example:

START TEST-CASE "Checking distribution rate"
IF (dist_rate < minimum) THEN

FAIL TEST-CASE
ENDIF

END TEST-CASE
Version 1 112

Topic Title: CODE SECTION COMMANDS
EXECUTE TEST Command

Description:

This command is only valid in test scripts; it initiates execution of a named test.

Execution of the current script continues immediately at the next command – the script does
not wait for the named test execution to complete. To specify that the script should wait, use
the WAIT FOR TEST command. For more information on the WAIT FOR TEST command,

see WAIT FOR TEST Command.

Format:

EXECUTE TEST name {, ON NODE node}

Parameters:

name
The test name.

node
A character variable, or quoted character string, containing the name of the node on which
the test is to be executed. The default is to initiate execution of the test by a Test Manager on
the local node.

Examples:

EXECUTE TEST payroll

EXECUTE TEST pers, ON NODE "Beta1"

EXECUTE TEST pers, ON NODE test-node
Version 1 113

Topic Title: CODE SECTION COMMANDS
EXECUTE THREAD Command

Description:

This command is only valid in test scripts; it initiates execution of a named script on a named
thread.

Execution of the current script continues immediately at the next command – the script does
not wait for the named thread execution to complete. To specify that the script should wait,
use the WAIT FOR SCRIPT command. For more information on this command, see WAIT
FOR SCRIPT Command

The thread must be defined within the Definitions section of the current test script.

Format:

EXECUTE THREAD thread USING SCRIPT script {&}

{, ON NODE node} {&}

{, NUMBER number} {&}

{, INTERVAL interval} {&}

{, STARTUP DELAY value}

Parameters:

thread
The thread name.

script
A quoted character string, containing the name of the script to execute.

node
A character variable, or quoted character string, containing the name of the node on which
the thread is to be executed. The default is to initiate execution of the thread by a Test
Executer on the local node.

number
An integer variable or value defining the number of threads to attach for this thread
execution. If the option is omitted, the number defaults to 1. The value must be in the range
0–65535 inclusive.

interval
An integer variable or value defining the number of seconds delay between the start of script
execution on one thread and the next, in a set of threads. It allows script executions to be
staggered. This option may only be specified if the number of threads defined by the
NUMBER option is greater than 1. If the parameter is omitted, the value defaults to 0
seconds. The value must be in the range 0–32767 inclusive.

value
An integer variable or value defining the number of seconds that the Test Manager should
Version 1 114

Topic Title: CODE SECTION COMMANDS
delay between attaching a thread or set of threads, and beginning to execute scripts on
those thread(s). If this parameter is omitted, the value defaults to 0 seconds. The value must
be in the range 0–32767 inclusive.

Examples:

EXECUTE THREAD pay-load USING SCRIPT "pay0100", &
NUMBER 30, INTERVAL 10

EXECUTE THREAD pers USING SCRIPT "pers001", &
STARTUP DELAY 30

EXECUTE THREAD pers USING SCRIPT "change_dept"
Version 1 115

Topic Title: CODE SECTION COMMANDS
FAIL TEST-CASE Command

Description:

This command indicates that the current test case has failed. The test case failure message
is sent to the report log, and the test case anomaly count is incremented.

Script execution is resumed at the first instruction following the end of the test case section
(i.e. the END TEST-CASE command). If a “GOTO” clause is specified, script execution is
resumed at the point identified by the clause label. If a valid command immediately follows
the FAIL TEST-CASE command that would not be executed because of the jump in script
execution, the script compiler outputs a warning message when the script is compiled, but
still produces an object file (assuming there are no errors).

Note: This command is only valid within a test case section of a script. It can be repeated as
often as required within an individual test case.

Format:

FAIL TEST-CASE {GOTO label}

Parameter:

label
A label defined within the current scope of the script, to which control branches.

Example:

START TEST-CASE "Checking distribution rate"
IF (dist_rate < minimum) THEN

FAIL TEST-CASE
ELSEIF (dist_rate > maximum) THEN

FAIL TEST-CASE
ENDIF

END TEST-CASE
Version 1 116

Topic Title: CODE SECTION COMMANDS
HISTORY Command

Description:

History logs contain a history of the executions of a test. Therefore, the programme always
attempts to open an existing history log each time the test is executed.

The HISTORY command allows you to specify a message to be logged in this file. Each
message will have a date, time and thread name associated with it in the history log.

A history message may consist of any number of individual values separated by commas.
Any non-printable ASCII characters in character values are replaced with periods (“.”)
Integer values are written as signed values, using only as many characters as necessary.

Format:

HISTORY value {, value...}

Parameters:

value
The value or variable to be written to the history log. This may be a variable or quoted
character string.

Examples:

HISTORY "Test Run Completed." &
’ Actions = ’, action_count

HISTORY "This message contains a character command " &
"to represent the tilde character ~~"

HISTORY "This message contains a ’single quoted section’" &
’and "a double one here".’
Version 1 117

Topic Title: CODE SECTION COMMANDS
PASS TEST-CASE Command

Description:

This command indicates that the current test case has succeeded. The test case success
message is sent to the report log.

If no GOTO clause is specified, script execution is resumed at the first command following
the end of the test case section (i.e. the END TEST-CASE command). If a GOTO clause is
specified, script execution is resumed at the point identified by the clause label. If a valid
command immediately follows the PASS TEST-CASE command that would not be executed
because of the jump in script execution, the compiler outputs a warning message when the
script is compiled, but still produces an object file (assuming there are no errors).

Note: This command is only valid within a test case section of a script. It can be repeated as
often as required within a test case.

If the END TEST-CASE command is reached during execution of the script, the test case is
automatically considered to have succeeded, and the success message is sent to the report
log.

Format:

PASS TEST-CASE {GOTO label}

Parameter:

label
A label defined within the current scope of the script, to which control branches.

Example:

START TEST-CASE "Checking distribution rate"
IF (dist_rate >= minimum) THEN

PASS TEST-CASE
ELSE

FAIL TEST-CASE
ENDIF

END TEST-CASE
Version 1 118

Topic Title: CODE SECTION COMMANDS
REPORT Command

Description:

Report logs contain transient information relating to the execution of a test.

The REPORT command allows the user to specify a message to be logged in this file. Each
message will have a date, time and thread name associated with it in the report log.

A report message may consist of any number of individual values separated by commas.

Any non-printable ASCII characters in character values are replaced with periods (“.”).
Integer values are written as signed values, and use only as many characters as are
necessary.

Format:

REPORT value{, value...}

Parameters:

value
The value or variable to be written to the report log. This may be a variable or quoted
character string.

Examples:

REPORT "Section 1 Completed after ", loops, &
’ Iterations’

REPORT "This is a long message ", &
"that is continued on this line ", &
"and this line"

REPORT "This message contains a character command " &
"to represent the tilde character ~~"

REPORT "This message contains a ’single quoted section’" &
’and "a double one here".’
Version 1 119

Topic Title: CODE SECTION COMMANDS
START TEST-CASE Command

Description:

The START TEST-CASE command introduces a section of code that is grouped together
into a test case. The section is terminated by an END TEST-CASE command.

The START TEST-CASE command must include a description of the test case. The test
case description and test case status are written to the report log when the test case is
executed.

Note: Test cases cannot be nested, so a test case must be terminated with an
END TEST-CASE command before a new test case section can be started. However, there
is no restriction on calling another script that contains test cases, from within a test case
section.

Format:

START TEST-CASE description

Parameter:

description
A character variable or quoted literal string containing text that describes the test case.

Examples:

START TEST-CASE "Checking for appearance of UNITS field"
IF (no_units = 0) THEN

FAIL TEST-CASE
ENDIF

END TEST-CASE

SET tc_desc_str = "Checking for appearance of UNITS field"
START TEST-CASE tc_desc_str

IF (no_units = 0) THEN
FAIL TEST-CASE

ENDIF
END TEST-CASE
Version 1 120

Topic Title: CODE SECTION COMMANDS
Synchronization Commands
These commands address events that scripts may have to wait for before continuing their
execution.
Version 1 121

Topic Title: CODE SECTION COMMANDS
ACQUIRE MUTEX Command

Description:

This command acquires exclusive access to a shared resource, known as a mutex. The
mutex is identified by its name and scope (which must be either “LOCAL” or “TEST-WIDE”).
A test-wide mutex is one that is shared by all scripts running as part of a distributed test; a
local mutex is only shared between scripts running on the local node.

By default, if an attempt is made to acquire a mutex that has already been acquired by
another script (within the same scope), then the thread will be suspended until the mutex is
released. However, if a time-out period is specified, this represents the maximum number of
seconds that OpenSTA will wait for the mutex to be released before timing out the request. A
period of zero indicates that the request should be timed out immediately if the mutex has
been acquired by another script.

The “ON TIMEOUT GOTO tmo_label” clause can be specified to define a label to which
control should be transferred if the request times out. In addition, the “ON ERROR GOTO
err_label” clause can be specified to define a label to which control should be transferred in
the event of an error, or if the request times out and there was no “ON TIMEOUT GOTO
tmo_label” clause.

Format:

ACQUIRE {scope} MUTEX mutex_name {&}

{,WITH TIMEOUT period {,ON TIMEOUT GOTO tmo_label}} {&}

{,ON ERROR GOTO err_label}

Parameters:

scope
The scope of the mutex to be acquired. This must be either “LOCAL” or “TEST-WIDE”, and
defaults to “LOCAL”.

mutex-name
A character variable, or quoted character string, containing the name of the mutex which is
to be acquired. “mutex-name” must be a valid CYRANO dataname.

period
An integer variable or value, defining the number of seconds to wait before an unsatisfied
request is timed out. The valid range is 0–2147483647.

tmo_label
A label defined within the current scope of the script, to which control branches if a time-out
occurs.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs, or the command times out and “tmo_label” is not specified.
Version 1 122

Topic Title: CODE SECTION COMMANDS
Example:

ACQUIRE LOCAL MUTEX "MUMPS-SERVER", ON ERROR GOTO mumps-error
Version 1 123

Topic Title: CODE SECTION COMMANDS
CLEAR SEMAPHORE Command

Description:

This command resets a named semaphore to its “Clear” state. The semaphore is identified
by its name and scope (which must be either “LOCAL” or “TEST-WIDE”). A test-wide
semaphore is one that is shared by all scripts running as part of a distributed test; a local
semaphore is only shared between scripts running on the local node.

The “ON ERROR GOTO err_label” clause can be specified to define a label to which control
should be transferred in the event of an error.

Format:

CLEAR {scope} SEMAPHORE semaphore-name {&}
{,ON ERROR GOTO err_label}

Parameters:

scope
The scope of the semaphore to clear. This must be either “LOCAL” or “TEST-WIDE”, and
defaults to “LOCAL”.

semaphore-name
A character variable, or quoted character string, containing the name of the semaphore to
clear.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs.

Example:

CLEAR LOCAL SEMAPHORE "SERVER-RUNNING"
Version 1 124

Topic Title: CODE SECTION COMMANDS
RELEASE MUTEX Command

Description:

This command releases a named mutex. The mutex to be released is identified by its name
and scope, which must correspond to the values specified on the corresponding ACQUIRE
MUTEX command.

The “ON ERROR GOTO err_label” clause can be specified to define a label to which control
should be transferred in the event of an error. Note that an error always occurs if the script
that issues the RELEASE MUTEX request has not previously acquired it.

Format:

RELEASE {scope} MUTEX mutex_name {&}
{,ON ERROR GOTO err_label}

Parameters:

scope
The scope of the mutex to release. This must be either “LOCAL” or “TEST-WIDE”, and
defaults to “LOCAL”.

mutex-name
A character variable, or quoted character string, containing the name of the mutex to
release.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs.

Example:

RELEASE LOCAL MUTEX "MUMPS-SERVER"
Version 1 125

Topic Title: CODE SECTION COMMANDS
SET SEMAPHORE Command

Description:

This command sets a named semaphore to its “Set” state. The semaphore is identified by
name and scope (which must be either “LOCAL” or “TEST-WIDE”). A test-wide semaphore
is one that is shared by all scripts running as part of a distributed test; a local semaphore is
only shared between scripts running on the local node.

The “ON ERROR GOTO err_label” clause can be specified to define a label to which control
should be transferred in the event of an error.

Format:

SET {scope} SEMAPHORE semaphore-name {&}
{,ON ERROR GOTO err_label}

Parameters:

scope
The scope of the semaphore to be set. This must be either “LOCAL” or “TEST-WIDE”, and
defaults to “LOCAL”.

semaphore-name
A character variable, or quoted character string, containing the name of the semaphore to be
set.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs.

Example:

SET LOCAL SEMAPHORE "SERVER-RUNNING"
Version 1 126

Topic Title: CODE SECTION COMMANDS
SYNCHRONIZE REQUESTS Command

Description:

HTTP requests are issued asynchronously. Immediately after an HTTP request has been
issued, the next command in the script is processed. OpenSTA does not wait for a response
to be received for an HTTP request.

This command causes the thread currently executing to be suspended immediately, until
responses have been received for all the requests that have been issued by the thread. It is
only valid within a script that has been defined as MODE HTTP.

Format:

[SYNCHRONIZE | SYNCHRONISE] REQUESTS

Parameters:

None.

Examples:

SYNCHRONIZE REQUESTS

SYNCHRONISE REQUESTS
Version 1 127

Topic Title: CODE SECTION COMMANDS
WAIT Command

Description:

This command suspends the script execution for the specified number of seconds. The unit
is either seconds or milliseconds depending upon the value of the Environment statement
WAIT UNIT p23.

Format:

WAIT period

Parameter:

period
An integer variable or value defining the number of seconds for which script execution is to
be suspended. The valid range is 0–2147483647.

Examples:

WAIT 5

WAIT Wait-Period
Version 1 128

Topic Title: CODE SECTION COMMANDS
WAIT FOR SCRIPT Command

Description:
This command is applicable to test scripts only; it halts the script until the specified script has
completed. The script must have been initiated by an EXECUTE THREAD command on the
same Test Manager.

If a period is specified, this represents the maximum number of seconds that the script will
wait before timing out the current script. When a test script times out, a message is written to
the audit log, the script execution is either aborted or the specified action carried out when
error trapping is enabled via the ON ERROR command.

Alternatively, the "ON TIMEOUT GOTO tmo_label" clause can be specified, to define a label
to which control should be transferred in the event of a time-out.

If no period is specified, the script will only resume when the specified thread has completed.

Format:

WAIT {period} FOR SCRIPT script_name {AND script_name}{&}

{, ON TIMEOUT GOTO tmo_label}

Parameters:

period
An integer variable or value defining the number of seconds to wait. The valid range is 0–
32767.

script_name
A character variable, or quoted character string, containing the name of the script that must
complete before script processing is resumed. You may specify more than one script name,
separated by the "AND" operator; to aid legibility, you may enclose the script names in
parentheses.

tmo_label
A label defined within the current scope of the script, to which control branches if a time-out
occurs.

Examples:

WAIT FOR SCRIPT “payroll“

WAIT FOR SCRIPT (“pers“ AND “payroll“)

WAIT FOR SCRIPT ’payroll’, ON TIMEOUT GOTO Timed-out
Version 1 129

Topic Title: CODE SECTION COMMANDS
WAIT FOR SEMAPHORE Command

Description:

This command halts the script until the specified semaphore is in its “Set” state. The
semaphore is identified by its name and scope (which must be either “LOCAL” or
“TEST-WIDE”). A test-wide semaphore is one that is shared by all scripts running as part of
a distributed test; a local semaphore is only shared between scripts running on the local
node.

By default, if the semaphore is in its “Clear” state when the WAIT FOR SEMAPHORE
command is issued, the thread will be suspended until it is set into its “Set” state. However, if
a time-out period is specified, this represents the maximum number of seconds that
OpenSTA will wait for the semaphore to be set before timing out the request. A period of
zero indicates that the request should be timed out immediately if the semaphore is not set.

The “ON TIMEOUT GOTO tmo_label” clause can be specified to define a label to which
control should be transferred if the request times out. In addition, the “ON ERROR GOTO
err_label” clause can be specified to define a label to which control should be transferred in
the event of an error, or if the request times out and there was no “ON TIMEOUT GOTO
tmo_label” clause.

Format:

WAIT {period} FOR {scope} SEMAPHORE semaphore-name {&}
{,ON TIMEOUT GOTO tmo_label} {&}
{,ON ERROR GOTO err_label}

Parameters:

period
An integer variable or value defining the number of seconds to wait. The valid range is 0–
2147483647.

scope
The scope of the semaphore to wait for. This must be either “LOCAL” or “TEST-WIDE”, and
defaults to “LOCAL”.

semaphore-name
A character variable, or quoted character string, containing the name of the semaphore to
wait for.

tmo_label
A label defined within the current scope of the script, to which control branches if a time-out
occurs.

err_label
A label defined within the current scope of the script, to which control branches if an error
occurs, or the command times out and “tmo_label” is not specified.
Version 1 130

Topic Title: CODE SECTION COMMANDS
Example:

WAIT 10 FOR SEMAPHORE "SERVER-RUNNING"
Version 1 131

Topic Title: CODE SECTION COMMANDS
WAIT FOR TEST Command

Description:
This command is applicable to test scripts only; it halts the script until the specified test has
completed. The test must have been initiated by an EXECUTE TEST command on the same
Test Manager. If more than one test with the specified name is running, the script is halted
until all the tests have completed.

If a period is specified, this represents the maximum number of seconds that the script will
wait before timing out the current script. When a test script times out, a message is written to
the audit log, the script execution is either aborted or the specified action carried out when
error trapping is enabled via the ON ERROR command.

Alternatively, the "ON TIMEOUT GOTO tmo_label" clause can be specified, to define a label
to which control should be transferred in the event of a time-out.

If no period is specified, the script will only resume when the test completes.

Format:

WAIT {period} FOR TEST test_name {AND test_name}{&}

{, ON TIMEOUT GOTO tmo_label}

Parameters:

period
An integer variable or value defining the number of seconds to wait. The valid range is 0–
32767.

test_name
The name of the test that must complete before script processing is resumed. You may
specify more than one test name, separated by the "AND" operator; to aid legibility, you may
enclose the test names in parentheses.

tmo_label
A label defined within the current scope of the script, to which control branches if a time-out
occurs.

Examples:

WAIT FOR TEST payroll

WAIT FOR TEST (pers AND payroll)

WAIT FOR TEST payroll, ON TIMEOUT GOTO Timed-out
Version 1 132

Topic Title: CODE SECTION COMMANDS
Statistical Data Logging Commands

Diagnostic commands help you to analyze scripts in order to diagnose an anomaly.
Version 1 133

Topic Title: CODE SECTION COMMANDS
END TIMER Command

Description:

This command switches off the named stop-watch timer and writes an ‘end timer’ record to
the statistics log, even if the timer is already switched off.

A stop-watch timer is switched on by the START TIMER command.

Format:

END TIMER name

Parameter:

name
The timer name. The timer must be declared in a TIMER statement in the Definitions section
of the script.

Example:

END TIMER Transaction
Version 1 134

Topic Title: CODE SECTION COMMANDS
START TIMER Command

Description:

This command switches on the named stop-watch timer and writes a ‘start timer’ record to
the statistics log.

There is no limit to the number of stop-watch timers that can be switched on at the same
time. However, if a timer is switched on twice without being stopped in the interim, the first
timer is effectively cancelled and thrown away when it is re-started.

A stop-watch timer is switched off by the END TIMER command.

Format:

START TIMER name

Parameter:

name
The timer name. The timer must be declared in a TIMER statement in the Definitions section
of the script.

Example:

START TIMER Transaction
Version 1 135

Topic Title: CODE SECTION COMMANDS
Diagnostic Commands
During test development, there is occasionally a need to find out more about what a script is
doing in order to diagnose an anomaly. The diagnostic commands assist in this process.
Version 1 136

Topic Title: CODE SECTION COMMANDS
LOG Command

Description:

OpenSTA maintains an audit trail of its activity and related events. The LOG command
allows the user to specify a message to be written to the audit log. Each message in this file
will have a date, time and thread name associated with it.

A log message may consist of any number of individual values separated by commas.

Any non-printable ASCII characters in character values are replaced with periods (“.”).
Integer values are written as signed values, using only as many characters as are
necessary.

Format:

LOG value{, value...}

Parameters:

value
The value or variable to be logged. This may be a variable or quoted character string.

Examples:

LOG "Customer Name = ", Cust-Name, &
’ Customer Code = ’, Cust-Code

LOG "This is a long message " &
"that is continued on this line " &
"and this line"

LOG "This message contains a ’single quoted section’" &
’and "a double one here".’
Version 1 137

Topic Title: CODE SECTION COMMANDS
NOTE Command

Description:

This command associates a list of variables or quoted character strings with the current
thread. The current value(s) can be viewed on the Thread Summary screen in
CYRANO TestCommander.

Format:

NOTE value{,char_value,...}

Parameters:

value
The value or variable to be logged. This may be a variable or quoted character string.

Examples:

NOTE Emp-Name

NOTE "Searching for ’End Of File’ failures"
Version 1 138

Topic Title: CODE SECTION COMMANDS
TRACE Command

Description:

This command writes user-definable messages to the script tracing log.

Format:
TRACE value{,value...}

Parameters:

value
The value or variable to be written to the trace log. This may be a variable or quoted
character string.

Examples:

TRACE ’Trace point following "overflow" condition’

TRACE "Trace point ", trcpos
Version 1 139

Topic Title: CODE SECTION COMMANDS
Miscellaneous Commands
Miscellaneous commands provide other functionality that has been found to be useful when
creating scripts.
Version 1 140

Topic Title: CODE SECTION COMMANDS
CONNECT Command

Description:

This command may be used to establish a TCP connection to a nominated host. It is only
valid within a script that has been defined as MODE HTTP.

This command specifies an ID for the TCP connection. This may be used in subsequent
GET, HEAD, POST and LOAD RESPONSE_INFO commands to use this TCP connection.
The TCP connection may be closed using the DISCONNECT command. It will also be
terminated when the thread exits the script.

The connection ID specified must not correspond to a TCP connection already established
previously using the CONNECT command. Otherwise a script error will be reported.

Format:

CONNECT TO host ON conid

Parameters:

host

A character variable, quoted character string or character expression, containing the host
name or IP address of the resource to connect to and, optionally, the port number on which
the connection is to be made. If a port is specified, it must be separated from the host field by
a colon (":"). If the port number field is empty or not specified, the port defaults to TCP 80.

conid

An integer variable, integer value or integer expression defining the connection ID. This is
used in all subsequent operations on this connection.

Examples:

CONNECT TO "proxy.dev.mynet:3128" ON 1

CONNECT TO myhost ON 2

CONNECT TO ’abc.com’ ON conid
Version 1 141

Topic Title: CODE SECTION COMMANDS
DISCONNECT Command

Description:

This command closes one or all of the TCP connections established using the CONNECT
command. It is only valid within a script that has been defined as MODE HTTP.

If the "FROM conid" clause is specified, the TCP connection identified by that Connection ID
will be closed. If the "ALL" keyword is used, all TCP connections established by the current
thread will be closed.

By default, the DISCONNECT command will wait until any requests on the connection(s) to
be closed are complete before closing them. If the WITH CANCEL clause is specified, the
connection(s) will be closed immediately.

The Connection ID specified must correspond to a TCP connection established using the
CONNECT command, otherwise a script error will be reported.

Format:

DISCONNECT [FROM conid | ALL] {,WITH CANCEL}

Parameters:

conid

An integer variable, integer value or integer expression identifying the Connection ID of the
TCP connection to be closed.

Examples:

DISCONNECT FROM 1

DISCONNECT FROM conid

DISCONNECT FROM 1, WITH CANCEL

DISCONNECT ALL

DISCONNECT ALL, WITH CANCEL
Version 1 142

Topic Title: CODE SECTION COMMANDS
LOAD ACTIVE_THREADS Command

Description:

This command allows the number of threads which are currently active on the current Test
Manager to be loaded into an integer variable for later use.

The count of active threads includes all threads which are executing either their primary
script or a secondary script. It does not include threads which are processing a start-up
delay or which are currently suspended.

Format:

LOAD ACTIVE_THREADS INTO variable

Parameter:

variable
An integer variable into which the count of active threads is loaded.

Example:

LOAD ACTIVE_THREADS INTO active-count
Version 1 143

Topic Title: CODE SECTION COMMANDS
LOAD DATE Command

Description:

This command loads an integer variable with the number of days since the system base
date, or a character variable with the system date.

For character variables, the system date will be loaded in the system default format (for
example, “DD–MMM–CCYY”); the date will be truncated as required to fit into the target
variable.

Format:

LOAD DATE INTO variable

Parameter:

variable
The name of a character or integer variable into which the date is loaded.

Examples:

LOAD DATE INTO INT-DATE

LOAD DATE INTO CHAR-DATE
Version 1 144

Topic Title: CODE SECTION COMMANDS
LOAD NODENAME Command

Description:

This command loads the current node name into a variable.

Format:

LOAD NODENAME INTO variable

Parameter:

variable
A character variable into which the node name is loaded. The node name will be truncated
as required, to fit into the target variable.

Example:

LOAD NODENAME INTO Node-name
Version 1 145

Topic Title: CODE SECTION COMMANDS
LOAD SCRIPT Command

Description:

This command loads the name of the script being executed, into a character variable.

Format:

LOAD SCRIPT INTO variable

Parameter:

variable
A character variable into which the script name is loaded. The script name will be truncated
as required, to fill the target variable.

Example:

LOAD SCRIPT INTO Scriptname
Version 1 146

Topic Title: CODE SECTION COMMANDS
LOAD TEST Command

Description:

This command loads the name of the test of which the script is a part, into a variable. The
test name will be truncated as required to fit into the target variable. The maximum size of
the string returned by this command is 16 characters.

Format:

LOAD TEST INTO variable

Parameter:

variable
A character variable into which the name of the test is loaded.

Example:

LOAD TEST INTO Testname
Version 1 147

Topic Title: CODE SECTION COMMANDS
LOAD THREAD Command

Description:

This command loads the name of the thread on which the script is currently executing, into a
character variable.

The variable should be 16 bytes long, since thread names may be up to 16 bytes long. The
thread name will be truncated as required to fill the target variable.

Format:

LOAD THREAD INTO variable

Parameter:

variable
A character variable into which the thread name is loaded.

Example:

LOAD THREAD INTO Thread-Name
Version 1 148

Topic Title: CODE SECTION COMMANDS
LOAD TIME Command

Description:

This command loads a variable with either the number of 10ms ‘ticks’ since midnight (if the
variable is an integer variable), or the system time (if the variable is a character variable).

For character variables, the system time will be loaded in the system default format,
truncated if the variable is not long enough to hold it.

Format:

LOAD TIME INTO variable

Parameter:

variable
The name of a character or integer variable into which the time is loaded.

Examples:

LOAD TIME INTO Int-time

LOAD TIME INTO Char-time
Version 1 149

Topic Title: CODE SECTION COMMANDS
LOAD TIMER Command

Description:

This command loads an integer variable with the current value – as a number of 10ms ticks
– of the specified timer. The current value of a timer is calculated by taking the time for the
latest stop timer and subtracting from it the time for the preceding start timer. If no start
timer / stop timer commands have been executed for the specified timer by the current
thread an error will occur. This will either abort script execution, or take the specified action if
error trapping is enabled via the ON ERROR command.

Format:

LOAD TIMER name INTO variable

Parameters:

name
The timer name. The timer must be declared in a TIMER statement in the Definitions section
of the script.

variable
The name of an integer variable into which the timer value – in 10ms ticks – is loaded.

Example:

LOAD TIMER Transaction INTO Timval
Version 1 150

Topic Title:
A
ACQUIRE MUTEX command 122
Arrays 32
Audit file 137
C
CALL command 89
CALL SCRIPT command 90
CANCEL ON command 92
Character data type 27
Character representation 7

Command character representation 12
Control character representation 12
Control command 10, 11
Using ASCII mnemonics 9
Using hexadecimal ASCII code 8

CHARACTER statement 27
Character strings 7
Characters ignored 42
CLEAR SEMAPHORE command 124
CLOSE command 105
CODE command 41
Code section 6

Commands 42, 48
Structure 42

Command character 11
Command terminator 14, 42
Command types 43
Comments 14
Conditional compilation 18
CONNECT Command 50
Constant data type 28
CONSTANT statement 28
Continuation character 13
Control character 42
Control character specifier 12
Version 1 151

Topic Title:
CYRANO datanames 15
D
Data types

Character 27
Constant 28
Integer 30

DEFINITIONS command 24
Definitions section 6, 24
DESCRIPTION statement 21
DETACH command 93
DISCONNECT Command 51
DO command 94
E
END SUBROUTINE command 95
END TEST-CASE command 112
END TIMER command 134
ENTRY command 96
ENVIRONMENT command 20
Environment section 6, 20
EXECUTE TEST command 113
EXECUTE THREAD command 114
EXIT command 97
EXTRACT command 82
EXTRACT function 79
F
FAIL TEST-CASE command 116
File Handling Commands 104
FILE statement 29
FORMAT command 83
G
GENERATE command 33, 66
GET Command 52
Global variables 36
GOTO command 98
Version 1 152

Topic Title:
H
HEAD Command 55
HISTORY command 117
History file 117
I
IF command 99

Binary operators 99
INCLUDE statement 17
Integer data type 30
INTEGER statement 30
L
Labels 46, 98, 99, 116, 118
LOAD ACTIVE_THREADS command 143
LOAD DATE command 144
LOAD RESPONSE_INFO BODY Command 58
LOAD RESPONSE_INFO HEADER Command 59
LOAD SCRIPT command 146
LOAD TEST command 147
LOAD THREAD command 148
LOAD TIME command 149
Local variables 35
LOCATE Command 87
LOCATE function 79
LOG command 137
M
Maximum values 16
Mutex access

ACQUIRE MUTEX command 122
RELEASE MUTEX command 125

N
NEXT command 33, 78
NOTE command 138
O
ON ERROR command 101
OPEN command 106
Version 1 153

Topic Title:
Overview 6
P
Parameter passing 29, 90, 96
PASS TEST-CASE command 118
Passing files as parameters 29
POST Command 60
R
Random variables 33, 37, 66
READ command 108
RECORD statement 31
RELEASE MUTEX command 125
Repeatable random variables 37

Seeds 37, 78
REPORT command 119
Report file 119
RESET Command 78
RESET command 73
Response timers 31
Restrictions 16
REWIND command 109
S
SCL

#ELIF command 18
#ELSE command 18
#ENDIF command 18
#IFDEF command 18
#IFNDEF command 18

Script processing 44
Script variables 35
Scripts

Code section 6
Definitions section 6
Environment section 6, 20
Processing 44

Semaphore access
Version 1 154

Topic Title:
CLEAR SEMAPHORE command 124
SET SEMAPHORE command 126
WAIT FOR SEMAPHORE command 130

SET Command 79
SET command 82, 87
SET SEMAPHORE command 126
START TEST_CASE command 120
START TIMER command 135
Statistics file 135
Stop-watch timers 134, 135
SUBROUTINE command 103
Subroutines 103

End 95
Symbols 47
SYNCHRONIZE REQUESTS Command 64
T
TEST statement 25
Tests

Detaching 93
THREAD statement 26
Thread variables 36
TIMER statement 31
Timers

Definition 31
Stop-watch 134, 135

TRACE command 139
V
Variable values 33, 78
Variables 33, 45

Global 36
Local 35
Random 37, 66
Randomizing 33, 37, 66

Seeds 78
Randomizing, Seeds 37
Version 1 155

Topic Title:
Repeatable random 37, 66
Seeds 37, 78

Scope 35
Script 35
Setting 79, 82
Thread 36
Value lists 33, 78

W
WAIT command 128
WAIT FOR SEMAPHORE command 130
WRITE command 110
Version 1 156

	Script Control Language
	Reference GUIDE
	Overview of Script Control Language Syntax
	Character Representation
	1. SCL commands.
	2. Arguments to SCL commands�– variable names, integer values or quoted character strings, for ex...
	3. Comments, to improve legibility and maintenance.

	1. Characters with values in the ranges hex�00 to 20 and hex�7F to A0, and the value hex�FF, are ...
	2. Two characters are reserved for use by SCL�– one as a command character and the other as a con...

	Character Command Using Hexadecimal ASCII Code
	Character Command Using ASCII Mnemonic
	Control Command
	Representing the Command Character
	Representing the Control Character

	Continuation Lines
	Comments
	CYRANO Datanames
	Maximum Values in Scripts
	Including Text from Other Source Files
	Conditional Compilation of Source Code
	The ENVIRONMENT Section
	DESCRIPTION Statement
	MODE HTTP Statement
	WAIT UNIT Statement
	The DEFINITIONS Section
	TEST Statement
	THREAD Statement
	CHARACTER Statement
	CONSTANT Statement
	FILE Statement
	INTEGER Statement
	TIMER Statement
	Variable Arrays
	Variable Values
	Variable Options
	Variable Scope Options
	Random Variable Options
	File Option

	Example Variable Definitions
	The CODE Section
	Code Section Structure
	Command Types
	Script Processing
	Variables
	Labels
	Symbols
	Code Section Commands
	HTTP Commands
	CONNECT Command
	DISCONNECT Command
	GET Command
	HEAD Command
	LOAD RESPONSE_INFO BODY Command
	LOAD RESPONSE_INFO HEADER Command
	POST Command
	SYNCHRONIZE REQUESTS Command
	Input Stream Entry Commands
	GENERATE Command
	GET Command
	HEAD Command
	NEXT Command
	POST Command
	RESET Command
	SET Command
	Output Stream Handling Commands
	~EXTRACT Command
	FORMAT Command
	1. The target variable that will receive the translated value. This may be either a character var...
	2. A format string defining the type of translation required. For an integer target variable, the...
	3. One or more values to be translated; these may be specified as variables or as literal text. A...

	LOAD RESPONSE_INFO BODY Command
	LOAD RESPONSE_INFO HEADER Command
	~LOCATE Command
	Flow Control Commands
	CALL Command
	CALL SCRIPT Command
	CANCEL ON Command
	DETACH Command
	DO Command
	END SUBROUTINE Command
	ENTRY Command
	EXIT Command
	GOTO Command
	IF Command
	ON ERROR Command
	RETURN Command
	SUBROUTINE Command
	File Handling Commands
	CLOSE Command
	OPEN Command
	READ Command
	REWIND Command
	WRITE Command
	Formal Test Control Commands
	END TEST�CASE Command
	EXECUTE TEST Command
	EXECUTE THREAD Command
	FAIL TEST�CASE Command
	HISTORY Command
	PASS TEST�CASE Command
	REPORT Command
	START TEST�CASE Command
	Synchronization Commands
	ACQUIRE MUTEX Command
	CLEAR SEMAPHORE Command
	RELEASE MUTEX Command
	SET SEMAPHORE Command
	SYNCHRONIZE REQUESTS Command
	WAIT Command
	WAIT FOR SCRIPT Command
	WAIT FOR SEMAPHORE Command
	WAIT FOR TEST Command
	Statistical Data Logging Commands
	END TIMER Command
	START TIMER Command
	Diagnostic Commands
	LOG Command
	NOTE Command
	TRACE Command
	Miscellaneous Commands
	CONNECT Command
	DISCONNECT Command
	LOAD ACTIVE_THREADS Command
	LOAD DATE Command
	LOAD NODENAME Command
	LOAD SCRIPT Command
	LOAD TEST Command
	LOAD THREAD Command
	LOAD TIME Command
	LOAD TIMER Command
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

